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ABSTRACT

Groundwater resources are under increasing pressure due to water abstractions and climate change, leading to
water scarcity problems and threats to groundwater-dependent ecosystems. Managed Aquifer Recharge (MAR)
techniques offer a promising strategy for mitigating water scarcity problems and advancing sustainable man-
agement of groundwater resources. These measures aim at intentional recharge and storage of water in aquifers
by linking periods of surplus with periods of shortage to overcome the temporal imbalance. While MAR has
traditionally been implemented at local scales, growing challenges related to water scarcity and groundwater
depletion have led to their increasing adoption across broader regions. This shift highlights the need for modeling
approaches that can adequately represent MAR within regional water systems, emphasizing interactions with
both hydrological and anthropogenic components while allowing investigation of trade-offs when planning these
measures. This paper provides an overview of the modeling methodologies used to assess MAR interventions in a
regional context. We begin by discussing the inherent complexity of the effects of groundwater interventions
such as MAR at the regional level, particularly regarding water quantity. We then look into a range of modeling
approaches available in the literature to capture these complexities, based on the modeling objective, data
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availability, and the required spatial and temporal scales. We further emphasize the importance of incorporating
multiple levels of uncertainty throughout the planning and implementation of MAR projects and model-based
analyses. Our study highlights that, despite their promise, integrated and holistic modeling approaches remain
underutilized in groundwater research, including MAR, highlighting a need for broader development and

adoption.

1. Introduction
1.1. Context

The changing climate over recent decades (Copernicus Climate
Change Service & World Meteorological Organization, 2025) has caused
significant stress on water resources across Europe (Bartholomeus et al.,
2023; Douville et al., 2021; Tabari et al., 2015), adversely affecting both
surface and groundwater systems, and based on climate projections,
more is yet to be expected. Groundwater resources, in particular, are
under increasing pressure due to intensified abstractions and the im-
pacts of climate change, contributing to water scarcity problems and
threatening groundwater-dependent ecosystems. Moreover, secondary
impacts such as salinization and disruptions to water availability across
sectors including industry, energy, agriculture and drinking water sup-
ply pose additional challenges (Deltaprogramme, 2023; Psomas et al.,
2021)

To address the challenges associated with groundwater resources, a
range of strategies are being implemented. These include both demand
side interventions such as water pricing (Portoghese et al., 2021) and
water conservation campaigns, as well as supply side interventions such
as restrictions on groundwater extraction (Theesfeld, 2010), land man-
agement strategies, Nature-Based Solutions (NBS), and Managed Aquifer
Recharge (MAR) (Zhang et al., 2020). While many of these measures
have been implemented at local scales (Zheng et al., 2021), growing
challenges related to water scarcity and groundwater depletion are
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driving their adoption across broader regions. This trend reflects tran-
sition in water landscapes (Bartholomeus et al., 2023), as regions adapt
to shifting hydrological conditions and recognize the need to upscale
these implementations to large-scale solutions. This highlights the ne-
cessity for coordinated management of groundwater and related re-
sources, by clearly describing competing objectives and trade-offs, and
balancing the needs and values of diverse stakeholders (Jakeman et al.,
2016). Especially at regional scales, this aspect becomes critical since
different water users, such as urban, agricultural, industrial, and envi-
ronmental sectors, face unique challenges and have dynamic needs such
as varying requirements for timing, quantity, and quality of water, as
well as vulnerability to shortages. At the same time, sources of supply
such as groundwater and surface water each behave differently over
various time scales (e.g., response times to changes such as rainfall or
withdrawals), reflecting their distinct dynamics. This variability further
complicates water management, as both sources are subject to complex
and changing climatic and anthropogenic conditions.

In this context, by thinking in terms of interdependencies between
water streams across sectors (Fig. 1), i.e., between the anthropogenic
system (e.g. drinking water production, industry, urban areas, agricul-
ture (irrigation) and wastewater treatment (Pronk et al., 2021)) and
hydrological systems, we move beyond traditional “silo-thinking” (Bach
et al., 2014). This integration helps identify what is and is not feasible
when implementing measures across hydrological and urban water
systems. However, despite being less frequently documented, the liter-
ature does contain examples of where such implementations have

@ Precipitation

@ Evapotranspiration

@ Drainage and surface runoff
@ Surface water abstraction
®) Drinking water supply

® Groundwater recharge
@ Residual water

® Seepage/Infiltration

© Seepage/Percolation

@ Lateral groundwater flow
@ Groundwater abstraction

1) Atmosphere
2 Surface water (SW)
4 @ Land (nature/
/ permeable surface)
4 Groundwater (GW)
5 Unsaturated zone

¥ @ Agriculture and horticulture
@ Greenhouse horticulture
@ wTpP

@ Drinking water production
® Industries

®wwTP

@ Domestic/urban sectors

Fig. 1. Integrated hydrological and anthropogenic water system. This figure illustrates the integrated water system including hydrological (in blue) and anthro-
pogenic (in grey) components along with the processes (in green) that link them together, creating interconnections and dependencies. Various feedback loops are
present between the hydrological and anthropogenic water system. The red arrow indicates MAR using treated wastewater, affecting flow to surface water and
dependent services. IWTP: Industrial Water Treatment Plant, WWTP: Waste Water Treatment Plant. Adapted from (Stofberg et al., 2025)
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caused unintended consequences, i.e., “negative externalities” (Alam
et al., 2022; Glendenninga and Vervoort, 2011). Thus, it is important to
understand the interactions between infrastructural and policy mea-
sures, in addition to how they influence hydrological and anthropogenic
water systems, which can foster more sustainable planning and devel-
opment (Di Baldassarre et al., 2018).

1.2. Managed Aquifer Recharge

Among the range of groundwater management strategies, Managed
Aquifer Recharge (MAR) is widely recognized as an effective technique
for addressing water scarcity and pressure on groundwater systems.
MAR involves the deliberate recharge and storage of water in aquifers
during periods of surplus, with the intention of recovering it during drier
periods (Bouwer, 2002; Sprenger et al., 2017), delivering environmental
benefits and supporting conjunctive use of multiple water sources (Van
der Gun, 2020). As a result, it helps balance water availability across
time and overcome temporal mismatches between supply and demand
(Zhang et al., 2020).

To facilitate aquifer recharge, different sources of water such as
storm water, surface water from rivers or lakes, treated wastewater, or
groundwater from other aquifers can be utilized (Sprenger et al., 2017;
Zhang et al., 2020). Combining these sources with MAR not only en-
hances groundwater availability, but also creates interdependencies
across the water system, where groundwater level dynamics become
influenced by the variability of external sources such as surface water
flows, stormwater, or reclaimed water inputs. This change also in turn
can influence the timing, availability and management of the external
sources. Therefore, whether a MAR scheme is urban-sourced (source
water from anthropogenic water flows), urban-serving (benefiting urban
populations), or non-urban (serving agricultural, environmental, or
rural purposes with non-urban sources) determines the necessity of
explicitly integrating anthropogenic water system dynamics into the
decision-making process. For example, treated wastewater (urban--
sourced MAR) offers the advantage of year-round availability; however,
conservation measures during droughts (due to its connection with
surface water flows) may reduce the volume of treated effluent available
for recharge (Dillon et al., 2022).

MAR applications can be assessed using different approaches
depending on the objectives and scale of analysis. At site-specific level,
different techniques such as geochemical and isotope tracer methods are
widely employed during feasibility, design, and monitoring stages, and
for evaluating MAR impacts. These methods provide critical insight into
subsurface processes including spreading and mixing processes of the
source water and the ambient groundwater (Ganot et al., 2018), resi-
dence times and flow pathways, or sensitivity of subsurface flows to
pumping regime and infiltrations rates (Moeck et al., 2017). They also
provide information into water quality evolution in the ambient
groundwater as a result of MAR implementation (IAEA, 2013),
capturing fine-scale hydrogeological interactions. While these measures
are invaluable in site-specific investigations, they can be limited in their
ability to extrapolate beyond the measurement extent. In this context,
tracer data can be used to inform models in order to extend such insights
to broader spatial and temporal scales (Ganot et al., 2018), and testing
alternative scenarios.

Therefore, modeling methodologies have proven useful in support-
ing decision-making, as well as in understanding and evaluating these
interventions. Ringleb et al. (2016) investigated field, laboratory and
theoretical MAR case studies which applied commonly used software
codes and tools, including groundwater flow, unsaturated flow, solute
transport, reactive transport and watershed or water balance models to
evaluate MAR applications. They classified the use of such process-based
models with respect to MAR type. They concluded that groundwater
flow models combined with solute or reactive transport algorithms are
the most widely used for MAR assessments, especially for local
(site)-scale feasibility, design and impact assessments.
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In another study, Sallwey et al. (2018) conducted a comprehensive
evaluation of unsaturated zone (vadose zone) models for assessing MAR
through a review of 16 studies. The analysis underscored the critical role
of these models in planning and optimizing MAR systems, as well as in
quantifying MAR impacts on both the vadose zone and underlying
groundwater. Similarly, Kloppmann et al. (2012) assessed the use of
groundwater models for site selection, feasibility analysis,
pre-dimensioning of the MAR system (Zuurbier et al., 2015) and design
of the associated monitoring system, with a focus on water quality as-
pects. Modeling studies have shown potential in assessing clogging
occurrence (Lippera et al., 2023) and precise scheduling of recharge and
recovery rates (Kacimov et al., 2016; Zuurbier et al., 2014). Despite the
availability of various modeling approaches for assessing the feasibility
and effectiveness of MAR applications, an overview of the model-based
studies that explicitly represent MAR’s role within the broader water
system (Fig. 1) remain limited. While previous reviews, such as Ringleb
et al. (2016) and Sallwey et al. (2018), have focused on site-scale MAR
modeling and feasibility assessments, and Kelly et al. (2013) outlined
general modeling approaches for integrated environmental modelling,
this manuscript extends those foundations, by bringing the focus to
regional-scale MAR and its integration within complex water systems.

In their review, Ringleb et al. (2016) observed that watershed or
water balance models, which partly consider an integrated water
resource management approach, were applied in only a few cases,
including in-channel modifications, rainwater harvesting and one case
of well and borehole schemes. The authors emphasized the need for
holistic models that allow integration of groundwater, surface water and
unsaturated zone in MAR studies, leading to a more complete repre-
sentation of the hydrological system - although they did not consider the
inclusion of anthropogenic subsystems into model-based analysis of
MAR cases.

More recently, the concept of Co-Managed Aquifer Recharge
(European Commission, 2025) has been introduced to link MAR with
multi-level governance through a participatory approach, aiming to
enhance collective awareness of groundwater exploitation. Therefore,
modeling approaches that facilitate this level of understanding should
become tools not only for planners but also for MAR practitioners,
enabling them to take initiative in understanding and managing MAR
dynamics within the water system, considering both local conditions
and consumptive flows, so that the sustainability of these interventions
at the regional level can be ensured. These approaches offer valuable
means to translate integrated thinking into quantitative tools that sup-
port scenario analysis, stakeholder engagement, and informed
decision-making.

Therefore, to understand the effectiveness of MAR strategies at the
regional scale, and to investigate their cumulative effects (Ros and
Zuurbier, 2017), models need to represent interactions within the inte-
grated hydrological and anthropogenic water system, extending beyond
groundwater alone. As shown in Fig. 1, MAR applications especially
when combined with water reuse, lie at the interface between anthro-
pogenic and natural water systems, by redirecting water from one source
to the other, altering water flows and impacts across the hydrological
and urban water systems. Accordingly, focusing on feedbacks and in-
terconnections within the whole system is necessary to identify how the
effects propagate, and investigate possible adverse consequences and
trade-offs.

For instance, during MAR, injecting surface water, stormwater, or
treated wastewater can reduce discharge to surface water, reflecting the
trade-off between slow (subsurface) and fast (surface) hydrological
processes, potentially delaying and shifting hydrological regimes
(Ghasemizade et al., 2019). In addition, over long periods, increased
water availability enables higher water demand, which can uninten-
tionally lead to higher and unsustainable water resource exploitation (Di
Baldassarre et al., 2018). Moreover, in some hydrogeological settings,
the surface-groundwater interaction in MAR applications allows a dy-
namic storage and redistribution between these resources. Therefore,
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considering these interconnections leads to responsible implementation
of groundwater management strategies such as MAR, through an inte-
grated and systemic approach (Bartholomeus et al., 2023; Dingemans
et al., 2020; Pronk et al., 2021)

1.3. Aim

The objective of this article is to provide insight into the methodol-
ogies and modeling frameworks available for assessing the effectiveness
and the impacts of MAR on the regional water system (Fig. 1), focusing
on water quantity aspects. To achieve this goal, the paper goes beyond
existing literature by: (i) classifying modeling approaches based on their
ability to represent feedbacks, subsystem connectivity, and spatial-
temporal contexts, (ii) synthesizing examples from MAR and other
groundwater interventions to illustrate transferable modeling strategies,
(iii) highlighting gaps in current MAR literature, especially regarding
the lack of integrated assessments that include the combined effects
within the water system. These classifications help further determine the
relevant temporal and spatial scales, and show how multiple approaches
can be adapted or combined to support integrated assessment (Fig. 2) for
MAR.

Moreover, we aim to contribute to the existing understanding of
MAR phases and objectives at local and regional scales by identifying
which models are best suited for specific contexts. To this aim, we build
on insights from previous review studies in this domain.

2. Methods

We present the methodology employed towards assessing different
modeling approaches available for studying MAR applications at the
regional scale. This includes a set of criteria, defined to guide the
assessment and comparison of the available approaches, with a focus on
their capacity to simulate interacting processes and feedbacks within the
integrated hydrological and anthropogenic water systems, as also indi-
cated in Fig. 1.

Furthermore, we draw on case studies from peer-reviewed journals
and conference proceedings, and employ a snowballing strategy by
examining the reference lists of previously identified publications. These
studies were retrieved via Google Scholar and Scopus using a combi-
nation of search keywords, including “MAR”, “artificial recharge”,
“modeling”, and “integrated model”. The inclusion criteria for the sub-
sequent choice of articles were: (i) a focus on model-based analyses,
particularly those addressing the regional dimensions of MAR applica-
tions, (ii) aimed at groundwater management and/or in relation to de-
mand satisfaction, (iii) focusing on the use of integrated or holistic
models (Fig. 2), (iv) studies published in English. Therefore, pilot-scale
MAR studies without regional/system-level implications were excluded
from the reviewed articles. Studies focusing exclusively on water quality
or geochemical processes without water quantity modeling, non-peer-
reviewed sources (e.g., reports, grey literature) and studies without a
modeling component were also excluded. For each selected study, we
extracted key attributes: modeling methodology, subsystems repre-
sented, MAR phase addressed, source water type, and the five criteria
from Section 2.1 (objective, spatial and temporal scale and resolution,
connectivity of subsystems, and degree of abstraction). These elements
informed the comparative analysis in Table 1. The examples were cho-
sen for their thematic relevance and their potential to reflect real-world
implementation of MAR within the complex regional water system.
Overall, 22 studies were collected, and were assessed against the criteria
mentioned below.

2.1. Criteria
Here, we present the criteria used for assessing the applicability of

various modeling approaches for holistic assessment of MAR within a
regional context, focusing on the integrated water system shown in
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Fig. 1. The following criteria, explained below, guide the selection of the
modeling approaches:

Model application

Spatial scale and resolution
Temporal scale and resolution
Connectivity of subsystems
Degree of abstraction

These criteria are not meant to be considered in isolation; rather,
they reflect model features that are related and often require trade-offs.
For example, the purpose of model application might call for a high level
of spatial detail, but this could be constrained by computational limi-
tations or data availability associated with a certain degree of abstrac-
tion. The modeler might therefore make a choice based on the most
limiting factor.

2.1.1. Model application

The purpose for which a model is employed is the primary driver in
selecting the appropriate modeling approach, as it defines the questions
to be answered. Clearly defining the model’s intended application
guides the inclusion of processes and parameters, as well as the choice of
spatial and temporal resolution and the required level of abstraction. In
MAR contexts, whether models are applied to facilitate planning, design,
or operational decisions also influences these choices to ensure they
align with the objectives of the analysis.

2.1.2. Spatial scale and resolution

Hydrogeological and anthropogenic processes in water systems
function across multiple spatial scales, necessitating models that can
accurately capture scale-dependent dynamics. The spatial resolution of
these models critically affects their accuracy and relevance, depending
on study objectives. Various spatial representations have been used in
modeling the underlying hydrogeological and anthropogenic processes.
Commonly, they are classified as distributed (i.e., the model considers
spatial variations in process representation), lumped (i.e., the spatial
domain is treated in an aggregated or averaged manner), and semi-
distributed (i.e., the modeling domain is divided into sub-sections that
are internally homogeneous, but externally distinct).

2.1.3. Temporal scale and resolution

Temporal scale and resolution are critical considerations in modeling
of the integrated water system, as different subsystems (e.g., ground-
water vs. river flow) respond over varying timeframes. In addition, the
dynamics of anthropogenic components are dependent upon climatic
conditions, industrial and agricultural productions, human consumption
patterns, and supply availability, among other factors. This variability
complicates selection of the modeling methodology that integrates
proper temporal dynamics, particularly when assessing the impacts of
interventions. The choice of temporal scale (i.e., horizon) and resolution
should align with the study’s objectives to ensure key processes are
captured. Models typically treat time in three ways: steady-state
(assuming equilibrium conditions and neglect temporal changes); lum-
ped, discrete temporal models (which produce output for a single time
period, e.g., an average groundwater storage value over 30 years); and
dynamic quasi-continuous models (which generate output at each time
step, producing a time series of the output variable) (Kelly et al., 2013).
With regard to the temporal scale of analysis, the models may be applied
across four time horizons: near real-time (minutes to several days),
short-term (weeks to months), medium-term (1-30 years), and
long-term (30-100 years).

2.1.4. Connectivity of subsystems

Models of the integrated natural and anthropogenic water systems
(Fig. 1) represent the interactions between system components either as
one way (cause-effect) or feedback (two-way) connections. The ability
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Integrated assessment: assessments based on models that explicitly represent the
interactions and feedbacks between hydrological subsystems (groundwater, surface water, vadose
zone) and anthropogenic subsystems (drinking water production, industry, urban areas, agriculture
and wastewater treatment) within a single analytical framework.

Holistic modeling: system-level models that
represent the entire system in an aggregated
way, rather than modeling individual
components in detail.

Integrated modeling: coupling at least two
models of different subsystems (or processes),
with the possibility of one-way or two-way
feedbacks.

Fig. 2. Definitions of Integrated assessment, holistic and integrated modeling.

to incorporate feedbacks, which is crucial in complex systems (Sec. 2.1),
is a key modeling criterion. In Water Evaluation and Adaptation Plan-
ning (WEAP) (Stockholm Environment Institute, 2025), for example,
water availability constrains supply, which limits delivery volumes to
users. However, demand is typically predefined and does not adjust
dynamically within a single model run based on delivered volumes,
indicating a lack of internal feedback between water availability and
demand regulation. Such feedbacks need to be explicitly included
through customized modifications. In addition, incorporation of feed-
back processes allows to incorporate nonlinearities in boundary condi-
tions of the system, as opposed to static ones.

2.1.5. Degree of abstraction

Due to the complexity of the integrated hydrological and anthropo-
genic water system, the degree to which a model simplifies the real
world can vary significantly (Moradkhani and Sorooshian, 2008). This
depends on factors like the modeler’s experience (Beven, 2012), data
availability, and the required level of detail (spatial, temporal). These
aspects are captured by the term degree of abstraction,' which reflects
how much real-world processes are aggregated in the model. This often
involves using generalized relationships in order to represent multiple
functional elements as single, composite units. Therefore, a low degree
of abstraction offers a detailed representation (Borshchev and Filippov,
2004), whereas a high degree of abstraction corresponds to a more
simplified and generalized representation (less detail). Additionally,
more detailed (less abstract) models typically require more data and
computational resources.

3. Overview of modeling approaches

This section presents an overview and classification of the modeling
approaches used in the reviewed literature to study MAR within regional
water systems.

In order to connect modeling choices with MAR planning and prac-
tice, we describe the underlying mechanisms in each modeling method,
and how it aligns with decisions across MAR phases and scales (site to
region). Although many methods originate from general hydrogeology
or systems modeling, their adoption for MAR is relevant by considering;
e.g., process-based models for site-scale feasibility and design analyses
(Ringleb et al., 2016; Sallwey et al., 2018), water balance/allocation
tools for catchment-scale portfolio and reliability planning (Clark et al.,
2015; Gomez et al., 2006), and holistic/integrated models for regional
assessments and planning, involving anthropogenic-hydrologic systems
(Ghasemizade et al., 2019; Hanson et al., 2014).

1 Note that “abstraction” here differs from its use in water resources, where it
refers to groundwater extraction.

3.1. Numerical process-based groundwater models

Numerical process-based groundwater models, including ground-
water flow, unsaturated (vadose zone) flow, solute transport, and
reactive transport models have been widely used in MAR projects
(Ringleb et al., 2016). These models allow flexible spatio-temporal
representation of hydrological system processes, provided that proper
data on system properties is available for model calibration. In local
scale assessments, model design/or choice must reflect the processes and
subsystems relevant to the specific MAR technique (surface spreading,
in-channel modifications, well/shaft/borehole recharge, bank filtration,
rainwater harvesting (Sprenger et al., 2017)). For instance, Sallwey et al.
(2018) emphasized the critical role of unsaturated zone (vadose zone)
models for assessing MAR, particularly MAR techniques that directly
interact with the unsaturated zone, such as surface spreading,
in-channel modifications, and subsurface recharge via wells, shafts, and
boreholes. This is relevant for system design and evaluating impacts on
both the vadose zone and underlying groundwater. At regional scales,
the vadose zone remains a key connector between the surface and
groundwater, and should be taken into account, as it contributes largely
to recharge, and evapotranspiration (Stewart et al., 2025). However,
extending detailed vadose-zone representations to large-scale models is
challenging due to data and computational constraints, in addition to
scaling issues particular to these processes (Harter et al., 2004).

Similar challenges apply to other physically-based models (e.g.,
groundwater flow and transport models), since they often provide a
lower degree of abstraction in representing hydrogeological processes,
which in turn requires extensive parameterization and computational
resources at regional scales or for long-term temporal analysis. These
limitations are less restrictive when high-quality data and sufficient
computational resources are available. Focusing on the integrated hy-
drological and anthropogenic water system, numerical distributed
groundwater models often consider the components of the anthropo-
genic system as exogenous factors to the modeled groundwater system
and MAR setting (Banton and Klisch, 2007; Jovanovic et al., 2017),
which could restrict the model’s ability to simulate dynamic interactions
between these subsystems and allowing an integrated representation of
MAR systems. Therefore, the dynamics of urban-sourced and
urban-serving MAR can be misrepresented when only process-based
models of the hydrological system are applied for the analysis.

3.2. Lumped/semi-distributed water balance modeling

Water balance models have been used to improve the understanding
of the variables in the hydrological system, and parameterize their re-
lationships, useful for investigating a range of hydrological problems
(Xu and Singh, 1998). In these models, the level of complexity and
parametrization strongly depends on the objective of the study, and data
availability. In the context of water resources management, a water
balance can indicate the water flows into the catchment including up-
stream inflow, imported water sources, etc., which are primarily the



Table 1
Classification and description of model-based regional MAR studies according to the criteria in Sec. 2.2.
Modeling methodologies References Treatment of space Treatment of time Endogenous subsystems Model MAR Source
Lumped  Semi- Distributed Steady- Aggregate Dynamic GW SW AW Agr SE objective phase water
distributed state values
Process- GW flow models Banton and Klisch short-term v v GWM PA SW
based (2007)
models Jovanovic et al. medium- v v GWM PA StW,
(2017) term TWW
Pavelic et al. (2004) medium- v DES, GCP DES StW,
term TWW
S. Liu et al. (2024) medium- v GWM PA SwW
term
Zakir-Hassan et al. medium- v v GWM PL StW
(2025) term
Scanlon et al. (2025) long-term v v GWM PA SW, StW,
TWW
Water balance models Lindhe et al. (2020) medium- v v v Dem PL SW
term
Glendenninga and medium- v 4 v GWM- PA RW
Vervoort (2011) term Dem
Water Allocation models Clark et al. (2015) long-term v v v Dem PL TWW
Gomez et al. (2006) short-term v v v v GWM- PL SW
Dem
Berredjem et al. long-term v v v v v Dem - ND
(2023)
Holistic SDM Zanjanian et al. v v v v GWM- - -
models (2024)* Dem
Balali and Viaggi medium- v v v v v GWM - -
(2015)* term
Bates et al. (2019)* medium- v v v v GWM - -
term
Niazi et al. (2014) long-term v v v GWM- PL SW
Dem
Zhao and Boll long-term v v v v v GWM- PL SW
(2022); Zhao et al. Dem
(2021)
DBN Molina et al. (2013)* long-term v v v GWM — -
BN Susnik et al. (2013) X v v v v GWM- PL TWW
Dem
Portoghese et al. long-term v v v GWM - -
(2013)*
Integrated SDM-GW model Chang et al. (2010) SDM GW flow medium- v v v v GWM- PL SW
models models term Dem
SW-GW flow model Ghasemizade et al. long-term v v v v GWM- PA StW
(2019) Dem
Water allocation - GW flow ~ Palma et al. (2015) long-term v 4 v v GWM- PL TWW
-Hydrological - Dem
Geochemical models
Water allocation -GW flow  Niswonger et al. Water GW flow medium- v v v GWM- PL SW
models (2017) allocation model term Dem
model
MF-Onewater Hanson et al. (2014) long-term v v v v GWM- PL RW,
Dem TWW
Multiple water balance Guyennon et al. long-term v v v GWM- PL SW
models (2017) Dem
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Table 1 (continued)

Source
water

MAR

Model

Treatment of time Endogenous subsystems

Treatment of space

References

Modeling methodologies

phase

objective
SW AW Agr SE

GW

Steady- Aggregate Dynamic
values

state

Distributed

Semi-

Lumped

distributed

RW

PL

GWM-
Dem

medium-
term

GW flow

ABM

Bolton and Berglund

(2023)

ABM-GW models

models

(household
scale)

PL

GWM

long- &

GW flow

SDM

Secci et al. (2024)*

SDM-AI

medium-
term

models/Al

PL

GWM-
Dem

medium-
term

“

Liu et al. (2023)*

WSIMOD

Anthropogenic Water-including drinking water production and/or demand, wastewater treatment plants, industry, urban use, hydropower use; Agr

Groundwater; SW= Surface water; AW =

Abbreviations: GW

Performance assessment. RW

Not determined. *indicates cases where other groundwater interventions were studied. The analysis horizon is specified as near real-

time (minutes to several days), short-term (weeks to months), medium-term (1-30 years), and long-term (30-100 years).

Design; PA=

Planning; DES =

Demand satisfaction; GCP=Geochemical processes. PL=

Socio-economical subsystem. GWM = Groundwater Management; Dem =

Agricultural demand; SE

= Storm water; TWW = Treated wastewater. ND=

Surface water; StW:

Rainwater; SW:
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sources of water supply. System outflows may consist of surface water,
in addition to the different water demands. Therefore, these models can
provide a holistic quantification of both hydrological and anthropogenic
components of the water system and evaluate temporal and spatial
patterns of water supply and demand, whether represented in lumped,
or semi-lumped formats. They can support the evaluation of changes in
flow patterns following the implementation of interventions such as
MAR.

In addition to case-specific models developed based on the water
balance concept (Glendenninga and Vervoort, 2011; Lindhe et al.,
2020), some commonly known PC-based water allocation and planning
tools such as WEAP (Stockholm Environment Institute, 2025), AQUA-
TOOL (https://aquatool.webs.upv.es) and Water Community Resource
Evaluation and Simulation System (WaterCress) (CSIRO Land and
Water, 2025) have also been used to assess the potential of MAR ap-
plications as a reliable supply source in the catchments (Berredjem et al.,
2023; Clark et al., 2015; Gomez et al., 2006; Simonovic, 2002). They
often represent different components of the system, such as catchment
hydrology, storage elements, diversions, treatment centers, waste flows
and customer demands. These models also include features for economic
analysis.

3.3. System dynamics modeling

System Dynamics Modeling (SDM) is a methodology rooted in sys-
tems theory, appropriate for understanding non-linear behavior of
complex systems (Simonovic, 2020). It focuses on how system behavior
emerges from internal structures and functions (Forrester, 1961; Ster-
man, 2000), assessing how changes within endogenous elements influ-
ence system-wide dynamics (Simonovic, 2002). As a top-down method,
SDM relies on causal thinking and feedback loops (balancing or rein-
forcing) to model system dynamics. A key step is creating a Causal Loop
Diagram (CLD), a qualitative, expert-informed tool that maps feedback
and cause-effect relationships (Mirchi et al., 2012), which is refined
iteratively as system understanding improves (Susnik et al., 2012).

The quantitative simulation model is constructed by translating the
CLD into interconnected components (stocks), linked together with flows
and both influenced by auxiliaries (parameters). In this conceptualiza-
tion, stocks represent accumulated state variables (e.g., water) driven by
inflows and outflows of quantities over time, with system dynamics
simulated using ordinary differential equations. SDM is generally not
well-suited for spatial representation of system components, since it uses
aggregated (lumped) stocks that represent system behavior over a study
region. However, in some cases, SD has been enhanced though combi-
nation with GIS tools to incorporate spatial representation (Neuwirth
et al., 2015; Niazi et al., 2014). Alternatively, semi-lumped configura-
tions within SD structures have been developed to simulate groundwater
levels more efficiently, while allowing representation of nonlinearities
from other components of the water system (Roach and Tidwell, 2009).
SDM can flexibly integrate physical (e.g., hydrological, environmental)
and non-physical (e.g., social, economic) subsystems (Phan et al., 2021)
as endogenous elements of a unified model, enabling holistic assess-
ment. This methodology has been applied to a range of environmental
and water resource issues (Phan et al., 2021), including groundwater
management cases (Afruzi et al., 2021), though less frequently, such as
assessments of how MAR (Niazi et al., 2014; Zhao et al., 2021), water
pricing and water saving policies (Balali and Viaggi, 2015; Zanjanian
et al,, 2024), and irrigation constraints (Secci et al., 2024) affect
groundwater availability and supply-demand balance. It allows simul-
taneous analysis of objectives, revealing trade-offs and feedbacks often
missed when components are modeled separately. In MAR planning, the
inclusion of feedback processes is important, especially when addressing
long-term sustainability and resilience of the water system (Zhao and
Boll, 2022; Zhou et al., 2025). Emergence of behaviors from interacting
feedback loops is one of the features of SDMs which allows the inves-
tigation of process dominance (reinforcing or balancing the overall
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system state) in time.
3.4. Agent-based models

Agent Based Models (ABMs) are bottom-up approaches (Berglund,
2015), where behavior at system-level emerges from the interaction of
low-level, individual components (agents) with each other and with a
shared environment. Agents update their state characteristics based on
rules of behavior at each time step, based on the interaction with other
agents, or towards satisfying a goal related to the shared environment.

This methodology is useful for studying feedbacks between social (e.
g. hierarchical decisions, learning, the dynamics of multiple stake-
holders) and physical systems (hydrological and urban system). Similar
to SDMs, ABMs are often used to facilitate system understanding across a
range of parameter settings and to generate scenario-based insights.
However, both ABMs and SDMs share a common limitation in precise,
point-in-time predictions (Berglund, 2015) particularly in systems
involving human behavior and decision-making. Therefore, applying
ABMs in groundwater management studies requires data on how people
make decisions, adapt, and coordinate, as these behaviors influence
system states (e.g., groundwater availability). Such data are essential for
calibrating and validating the models for predictive applications.
Moreover, ABMs allow for spatial representation through agent char-
acterization. Recent application of ABMs to groundwater systems has
increased (Canales et al., 2024), due to the importance of assessing
decision-making on groundwater systems such as decentralized
(household level) injection of harvested rainwater for MAR (Bolton and
Berglund, 2023). These approaches can be used in combination with
other models of the hydrogeological system (See Sec. 3.3), to represent
the feedbacks between human behavior and groundwater conditions at
each time step.

3.5. Bayesian networks

Bayesian Networks (BNs) (Pearl, 1988) have been widely used for
knowledge representation and reasoning of complex systems under
uncertainty. They consist of directed acyclic graphs (DAGs), where
nodes represent variables and edges indicate dependencies. These de-
pendencies are quantified using Conditional Probability Tables (CPTs),
which support probabilistic inference of variable states. DAGs and CPTs
can be build using stakeholders and expert knowledge, empirical data,
simulations, or a combination of these (Phan et al., 2016). Unlike SDM
and ABM methods, BNs are not inherently designed to capture dynamic
feedback loops, and since they represent system state under stationary
conditions, they are not well suited for capturing the dynamics of a
system over time. On the other hand, the ability of BNs to effectively
represent stochasticity in systems is what makes them particularly
valuable tools in the context of water resource management and envi-
ronmental problems. In particular, Susnik et al. (2013) compare the
applicability of this methodology and SDM for water management
through artificial recharge of treated effluent combined with
demand-side policies. The study highlights their complementary roles in
analyzing different aspects of system-wide policy impacts on a stressed
aquifer.

To allow BNs to capture transient system states, Dynamic Bayesian
Networks (DBNs) (Kjaerulff, 1995) were introduced, which rely on time
slicing, in which networks representing multiple time domains are
linked together. This enables the representation of the evolution of
conditional probabilities (system stochastic outcomes) over the time
period of analysis. For example, Molina et al. (2013) applied this
methodology to assess the temporal evolution of a stressed groundwater
system under climate change impacts. However, one disadvantage of
BNs, similar to SDMs, is that the model structure can become overly
complex, which adds to the need for more data to formulate the CPTs
(Govender et al., 2022; Phan et al., 2016). Moreover, the probabilities
and dependencies are constrained by the quality and availability of the
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data used for their calculation.
3.6. Integrated models (hybrid methodologies)

Another approach for modeling complex systems is coupling
different modeling methodologies to create an integrated representation
of the system. This either includes (i) the integration of different sub-
system models together into a unified model (Kelly et al., 2013), or (ii)
the combination of different approaches (SDM, ABM, BNs, process-based
models of each subsystem) or other modeling methodologies such as
Machine Learning (ML) models (Tripathy and Mishra, 2024), leveraging
their respective strengths. Model integration can be either achieved
through loose coupling, where outputs from one model feed sequentially
into another without feedback (Bolton and Berglund, 2023), or tight
coupling, where models exchange inputs and outputs within each time
step through feedback loops (Boyce et al., 2020).

Integrated models are generally highly complex, reflecting the
complexity of the sub-models from which they are constructed. This
adds to their computational demand and data requirements. Integrated
models enable the coupling of existing subsystem models, simplifying
setup by avoiding the need to build from scratch. This is especially useful
in loosely coupled models, where sub-models can be calibrated and
validated independently. However, there is ongoing debate about how
errors from individual sub-models propagate once integrated (Bach
et al., 2014). This type of integrated modeling allows for multi-scale
representation of processes within the integrated water system.

An example of an integrated model is MODFLOW One-Water Hy-
drologic Flow Model (MF-OWHM) (Boyce et al., 2020), a process-based
distributed model for demand-driven, supply-constrained conjunctive
use. It supports regional analysis of MAR (Hanson et al., 2014), by
simulating infiltration, recharge rates, groundwater levels, and water
availability response to recharge strategies, within a unified system. The
authors emphasize that this integrated approach was essential for
analyzing coupled flows that would be difficult to estimate otherwise. In
another study, Bolton and Berglund (2023) combined a groundwater
flow model with an agent-based model to evaluate a micro-trading
rainwater program for urban aquifer recharge. Consumers and pro-
sumers interacted with a MODFLOW model via negative and positive
pumping rates, respectively, simulating the program’s impact on
groundwater levels. L. Liu et al. (2024) used the Water Systems Inte-
grated Modeling Framework (WSIMOD) for flux tracking in ground-
water for abstraction management. WSIMOD is a modeling framework
for integrated water management in terms of water quality and quantity
problems (Dobson et al., 2023) and it simulates interactions across water
system components (modeled as nodes connected by arcs conveying
water and pollutants) addressing both quantity and quality. Feedbacks
are incorporated via data exchange or rule-based triggers. WSIMOD’s
parsimonious representation and flexible architecture can allow for the
integration of both anthropogenic and hydrological systems.

3.7. Integration with machine learning approaches

Machine learning (ML) methodologies are used to identify patterns
and make predictions based on empirical data (Ahmed et al., 2024).
Some ML methods are used to learn the relationships between input
variables (e.g., rainfall, soil-types, pumping rates) and outputs (e.g.,
groundwater levels, river discharges). As such, they are powerful tools to
study complex non-linear relationships in datasets, without prior
knowledge of underlying physical laws. Contrary to physically-based
models which require high quality estimates for a limited number of
parameters (which may be spatially and/or temporally varying, adding
to the data requirements), ML methods (especially the more complex
ones) can tolerate lower quality data, although needed in greater
numbers. The physically-based models encapsulate system behavior in
theoretically sound equations, which are fundamentally correct if
properly chosen; whereas ML models depend entirely on having seen
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sufficient training data. These differences also highlight the various
sources and types of uncertainty inherent in each modeling approach.

ML methodologies (a key class of data-driven approaches) have
become valuable tools in water resources disciplines (Tripathy and
Mishra, 2024) and groundwater management (Rajaeea et al., 2019). ML
methodologies have shown promise in evaluating MAR performance,
particularly in addressing local-scale challenges (Sheik et al., 2024).
This includes prediction of groundwater levels (Bai and Tahmasebi,
2022; Dai et al., 2024; Fernandes et al., 2024; Rajaeea et al., 2019), and
clogging (Chew et al., 2024).

In the regional context, ML methods can be combined with holistic
approaches to improve the representation of the subsystems, while
allowing representation of system-level behavior and dynamics. For
example, Secci et al. (2024) combined the use of SDM, and a surrogate
ML model (i.e., a simplified, data-driven approximation of a complex
physical model) for a fast calculation of groundwater levels. Comple-
mentary to this model, effects of system-wide conditions and constraints
in irrigation management and pumping restrictions can be assessed
using the SDM.

Recent studies have shown growing interest in hybrid methodolo-
gies, including combinations of data-driven and process-based ap-
proaches (Schweidtmann et al., 2024), as well as integration of different
machine learning techniques and other statistical methods (Ahmed
et al., 2024). These hybrid approaches have been employed to improve
prediction accuracy, provide explainability, and improve generalization
(Tripathy and Mishra, 2024). Moreover, the integration of ML methods
and process-based approaches provides better interpretability to model
performance, which is one of the shortcomings of ML approaches.
Despite the advantages of machine learning methods in hydrogeological
contexts, they remain highly dependent on data availability. This means
that more complex models typically require larger and more diverse
datasets. Additionally, overfitting, where a model becomes overly
tailored to the training data, capturing noise or irrelevant patterns, poses
a significant risk, potentially compromising the model’s performance on
unseen or future data. In addition, these models are often constrained by
their low capacity to extrapolate beyond the training data, posing
challenges in transient and non-stationary environmental systems (Bai
and Tahmasebi, 2022), especially in hydrological and anthropogenic
water systems under changing climate and socio-economic conditions.

3.8. Examples in literature

Table 1 presents 22 examples of model-based analyses of MAR
applied in regional contexts. These examples are categorized according
to the modeling methodologies described in the previous section further
grouped into process-based models, holistic models and integrated
models. For each case, the table provides information on the objective of
the analysis, the subsystems included in the models (as outlined in
Fig. 1), and the phase of the MAR project addressed; planning, design,
operation, or performance assessment. Additionally, the spatial and
temporal scales of the modeling approaches are also included.
Furthermore, the information on the source water used for aquifer
recharge is presented in the table, which represents whether or not the
model-based analysis considers the source variability, an aspect that is
essential especially in urban-sourced MAR.

Table 1 presents various regional, large-scale MAR examples
assessed using groundwater flow models. Although this review focuses
on model-based analyses that incorporate cross-sectoral components of
MAR, these examples are included to offer a comparative framework
alongside more holistic and integrated modeling studies. We should
further mention that the number of examples provided for each
modeling approach is not intended to reflect their overall prevalence or
frequency of application. Rather, they were selected to illustrate how
each approach is applied in practice.

We can observe that regional-scale integrated/holistic modeling
studies that focus on water quantity aspects of MAR and treated
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wastewater as the source water remain limited. This was notable even
though the search terms explicitly included treated wastewater, water
reuse, and reclaimed water in the context of MAR and model-based
regional analyses. This observed gap can be partly attributed to regu-
latory constraints. In many countries, strict regulations govern the direct
or indirect use of reclaimed water, which may limit its adoption at a
regional scale, discouraging its large-scale implementation. However,
treated wastewater sources have been combined together with other
sources of water for replenishment projects (Hanson et al.,, 2014;
Jovanovic et al., 2017; Pavelic et al., 2004; Scanlon et al., 2025).

Process-based, distributed groundwater models are commonly used
in regional applications, but they usually represent the hydrological side
in detail and keep anthropogenic subsystems exogenous or simplified,
even in cases where the source water is from the anthropogenic system
(Zakir-Hassan et al., 2025). That limits feedbacks between human water
use and groundwater in a single run.

We can also observe that despite the lower flexibility of water bal-
ance and allocation models in explicitly representing feedbacks, they
have been applied in assessment of MAR with surface water (Lindhe
et al., 2020) or stormwater (Glendenninga and Vervoort, 2011), since
they implicitly consider feedbacks between surface and groundwater
systems, although with a higher degree of abstraction in comparison to
coupled surface-groundwater models (Niswonger et al., 2017). This may
also reflect the MAR community’s greater familiarity with these models.
In addition to the examples of model-based regional MAR, Table 1 in-
cludes studies (7 in total, marked with an asterisk) where integra-
ted/holistic modeling approaches have been successfully used in other
groundwater interventions such as water pricing (Balali and Viaggi,
2015), domestic water-saving policies (Zanjanian et al., 2024),
nature-based solutions (Liu et al., 2023), and irrigation policies (Molina
et al., 2013; Portoghese et al., 2013; Secci et al., 2024). Analyzing the
water quantity aspects of these interventions using such models is
particularly relevant, since similar to MAR, they impact multiple com-
ponents of the integrated hydrological and anthropogenic water system.
These models have proven valuable in simulating medium- and
long-term, system-wide effects, offering insights that can similarly
inform sustainable application of MAR strategies.

The classification in Table 1 does not include MAR type (e.g. based
on the classification by Sprenger et al. (2017)) because, at regional
scales, model selection is primarily driven by system-level objectives,
such as contribution to groundwater management, supply-demand
satisfaction, and interaction with other components of the integrated
water system (Fig. 1), rather than the operational details of a specific
MAR scheme. This contrasts with local or site-specific studies, where
MAR type strongly influences the choice of process-based models due to
differences in infiltration dynamics, recharge mechanisms, and opera-
tional constraints. Nevertheless, when practitioners aim for integrated
modeling of the regional system, site-scale process models can be
coupled with surface water, urban drainage, or allocation models to
capture feedbacks and assess long-term sustainability under varying
scenarios (Ghasemizade et al., 2019; Palma et al., 2015). Including
non-MAR examples in Table 1 therefore serves as a guide, illustrating
both the need and feasibility of integrated modeling approaches for
MAR planning and assessment, particularly in large-scale cases.

Furthermore, the reviewed studies indicate that at the regional scale,
physically-based distributed groundwater models are primarily applied
for analyses up to medium-term time horizons (Fig. 3). This is under-
standable, given their often high computational demands. While long-
term analyses using these models are also performed (Scanlon et al.,
2025), they typically explore a limited range of future scenarios. How-
ever, if sufficient computational resources are available, a broader set of
scenarios can, of course, be simulated. Similarly, ML models are used for
near real-time, short-, and medium-term analyses. As discussed in Sec.
3.4., these models struggle with extrapolations, which poses challenges
for long-term simulations, even when large historical timeseries data is
available. Integrated models, consisting of process-based or ML models
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Fig. 3. Comparison of modeling approaches for assessing MAR in relation to regional water quantity challenges. The figure illustrates the spatial (local to regional;
lumped, semi-distributed, or distributed) and temporal (short-to long-term) scales at which the modeling approaches were applied in the reviewed studies. Positions
represent typical applications observed in the selected literature, not the full theoretical range of each approach. Bayesian Networks are shown outside the temporal
range due to their non-temporal structure. System dynamics models have primarily been used for lumped representations, but examples of semi-distributed cases also
exit in literature. Integrated models are shown within regional scales and applied at longer time scales, based on their use in the reviewed studies, although they can

be applied across broader spatial and temporal scales.

of subsystems involved in the integrated water system (as illustrated in
Fig. 1), SDMs and DBNs, are often used in regional studies and for
medium-to long-term planning. Their lumped or semi-distributed
feature makes it more feasible to simulate a wide range of future sce-
narios and incorporate nonlinearities across the broader system. These
models enable analysis of the bulk components of the water system in an
aggregated manner. However, it is important to remain aware of the
types of feedback mechanisms they can (or cannot) represent.

4. Discussion
4.1. Comparison of the integrated and holistic modeling approaches

Table 2 compares the strengths and limitations of the modeling ap-
proaches used for the assessment of MAR regional objectives, with
regards to the temporal and spatial scale and resolution, their flexibility
to incorporate feedbacks, and model complexity. Such a comparison
allows for a more informed decision for the choice of appropriate
methodologies, fit to the specific type of application and goal. In addi-
tion, a comparative view of each approach’s strengths reveals oppor-
tunities for integration and strategic coupling of the different methods to
improve predictive capabilities, while offering deeper insights into
system behavior.

For instance, ML models can significantly improve computational
time in groundwater level predictions resulting from MAR imple-
mentation (Fernandes et al., 2024), enabling exploration of multiple
scenarios often constrained by physically-based models. Although ef-
forts have been made to couple multiple subsystem models to better
capture interconnections and feedbacks (Palma et al., 2015), these ap-
proaches are computationally expensive (Wardropper and Brookfield,
2022). This is due to their low level of abstraction in representing sub-
systems, which increases the complexity of iteratively running
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integrated models. Machine-learning approaches that bypass the com-
plexities of distributed groundwater models while still properly repre-
senting groundwater dynamics (Miro et al., 2021) can significantly
improve integrated modeling (Shen, 2018).

In addition, attempts have been made in coupling holistic modeling
techniques with more detailed subsystem (component) models. For
instance, coupling of an SD model and a groundwater flow model
(Chang et al., 2010) helped improve groundwater recharge estimation
fed to the SD model. This type of integrated approach allows assessing
the performance and long-term effects of different water management
alternatives including MAR, both on groundwater systems and on supply
reliability. Bayesian networks offer a holistic modeling approach,
valuable for stochastic estimations (Table 2). However, their complexity
can limit interpretation and application. Integrating them with
machine-learning approaches can enhance estimation of the conditional
probabilities (Moradi et al., 2022).

The different modeling approaches assessed can provide comple-
mentary perspectives for analyzing regional hydrological and anthro-
pogenic water systems (Secci et al., 2024; Susnik et al., 2013) and
evaluating MAR as part of that system. However, examples which apply
multiple methodologies in a comparative way are scarce and increased
application of these methodologies can enhance their effectiveness and
informed utilization.

We should note that the strengths and limitations summarized in
Table 2 reflect patterns observed in the reviewed literature rather than
universal facts about the modeling methodologies. Some of the char-
acteristics discussed are context-dependent and influenced by factors
such as data availability, computational resources, and system
complexity. To address this uncertainty, we explicitly note that these
statements should be interpreted as patterns in the reviewed examples
rather than absolute properties. Therefore, the comparative insights in
Table 2 should be considered within the scope of these reviewed
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Table 2
Strengths and limitations of diverse modeling methodologies in supporting regional objectives during MAR planning and assessment, based on the examples in
literature.
Modeling Methods Strengths Limitations
Process-based groundwater e Grounded in physical laws e Model parameterization dependent on high quality and detailed
models e Flexible in temporal and spatial details hydrogeological and stratigraphical data
e Familiar to the hydrogeological community e Often computationally demanding (for multiple scenario
e Facilitates interpretability and systems understanding (white-box models) analysis and long-term runs)
o Suitable for exploring terrae incognitae (beyond known system conditions, e Limited to groundwater system processes
such as climate change impacts)
Machine learning models for e Can offer faster computation than numerical groundwater models e Data hungry

groundwater prediction (especially for scenario exploration)

models under data-rich conditions
Integrated surface and
groundwater flow models

Water Balance models

accounting

Water Allocation models

offs among multiple demands
Suitable for water allocation planning

System Dynamics models

Efficient for long-term scenario simulation
Suitable for strategic planning

all model components
Bayesian Networks

variabilities in all system variables

components

Suitable for strategic planning
Integrated subsystem models
Providing multi-scale system representation

May provide enhanced predictive capability compared to process-driven
Integration of surface water and groundwater dynamics
Representation of feedbacks between surface and subsurface flows

(especially for MAR using surface water and stormwater)

Adaptable abstraction degree, depending on data availability
Flexible for incorporating anthropogenic water demands for water

Capable of including feedbacks and delays by using customized equations
Simplified and efficient accounting of supply availability, reliability, trade-

Holistic representation of the hydrological and anthropogenic water
systems, socioeconomic, and infrastructure components

Captures feedback loops, delays and nonlinear behaviors

Useful for analysis of hidden behaviors emerging due to the interaction of
Appropriate for quantifying uncertainties (stochastic nature), and
Capable of incorporating qualitative data (expert opinion especially when
quantitative data is scarce), socioeconomic, and infrastructure

Realization of integrated modeling through coupling of existing models

Possibility to incorporate feedbacks (between modeled components)

Poor extrapolation capability (long-term predictions such as
non-stationary climatic conditions)

Often lack interpretability (black-box models)

e Analysis is limited to hydrological domain

Requires quality data for both surface and groundwater model
parameterization

High computational cost to evaluate multiple scenarios quickly
Process parameterization is often kept simple, often lumped
(limited representation of spatial heterogeneity)

Limited representation of hydrological system, especially
groundwater flow dynamics

Limited representation of hydrological system, especially
groundwater flow dynamics (needs coupling with domain
models)

Includes implicit feedbacks (explicit feedbacks need to be
implemented using modular or custom equations)

Lumped representation of the system (lumped but can be
integrated to semi-distributed structure)

Lacks spatial aspect

Model structure can become overly complex, increasing model
parameters

Challenging representation of hydrogeological processes

Lumped representation of system components (but can handle

spatial aspects indirectly)

Limited capacity in handling dynamic processes- temporal detail
No feedback representation

Limited physical process representation

Model structure can become overly complex

High computational demand (for multiple scenario analysis and
long-term runs)

Requires high model parameterization

o Complexity of coupling multiple models (with different spatial
and/or temporal resolutions)

examples. In addition, the strengths or limitations of each approach may
not occur concurrently; for example, ML models can offer faster
computation or enhanced predictive capability under data-rich condi-
tions, but these advantages do not necessarily coincide. Future updates
to this collection incorporating additional literature examples could
further refine and enhance the insights presented here.

4.2. Uncertainty across modeling approaches

Uncertainty is inherent in model-based analyses of MAR measures,
and must be addressed to support robust and responsible decision-
making (Refsgaard et al., 2007). Uncertainty in MAR modeling ranges
from input data, parameter and structural uncertainty to deep uncer-
tainty related to unknown future socio-economic and climate conditions
(Lempert et al., 2003; Walker et al., 2013). The temporal scale of the
future system that models aim to represent has an influence on the types
and magnitudes of uncertainties introduced in the analysis, as longer
time horizons often involve greater unpredictability (e.g., future emis-
sion scenarios, climate models, and, socio-economic developments such
as future groundwater abstraction levels (Mustafa et al., 2019)). As
illustrated in Fig. 4, the diversity of modeling approaches, from
physically-based models to machine learning, system dynamics and
Bayesian networks, introduces varying capacities for uncertainty rep-
resentation and quantification, with some models better suited for
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parameter uncertainty, and others for scenario analysis.

Parameter and input uncertainty are universal aspects of all the
reviewed modeling methodologies, making robust MAR assessment
fundamentally dependent on high-quality data obtained through
comprehensive monitoring, field investigations, and careful data selec-
tion, aligned with study objectives and project stage. While such prac-
tices substantially reduce uncertainty, input and parameter uncertainty
is commonly quantified through sensitivity analysis and Monte Carlo-
based frameworks, to evaluate the impact of uncertain inputs and pa-
rameters on model outputs (Pianosi et al., 2016).

In physically-based models, which are inherently deterministic,
scenario analysis (what-if frameworks) allows to consider the influence
of external aspects such as abstraction scenarios, or boundary conditions
on simulated outputs. Therefore, exploring alternative external condi-
tions, such as pumping/recharge scenarios, helps assess management or
climatic impacts. In physically-based models (like MODFLOW), through
scenario analysis, one defines the boundary and management alterna-
tives, followed by sensitivity analysis within or across those scenarios to
quantify uncertainty effects. In addition, specific to groundwater flow
models, uncertainty in the geological interpretation of the subsurface
remains a major limitation, often affecting the accuracy of model pre-
dictions. This is typically addressed by considering alternative model
structures that represent plausible subsurface configurations (Mustafa
et al., 2019). Therefore, in regional scales of MAR analysis, this aspect
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Fig. 4. Overview of modeling objectives and methods in MAR studies by phase of analysis and spatial scale, highlighting the connection between project objectives,
system characteristics, and the selection of suitable modeling techniques. At local scales, models may include saturated and/or unsaturated flow processes depending

on MAR type and site conditions.

needs to be considered when these models are used.

As the complexity of the MAR scheme and the temporal and spatial
scales of analysis increase, models are integrated to improve feedback
mechanisms within the system under study. For integrated models,
uncertainty propagation may amplify or reduce upon integration (Bach
et al., 2014), as e.g., more system parameters are introduced in the in-
tegrated model (hence, potentially adding to parameter uncertainty),
while complex regional system representation is expected to improve
upon integration. Various frameworks are available that facilitate
mapping this propagation from one model to the other (Kirchner et al.,
2021), and introduce quantification frameworks. This is a complex task,
especially moving towards integration of multiple modeling frame-
works, each with varying schematizations (lumped-distributed subsys-
tem models creating structural uncertainty), scales, parameter
uncertainties, and feedback dependencies. These aspects complicate
investigation of future scenarios with these models due to computational
or methodological barriers.

In holistic modeling approaches such as SDMs, structural uncertainty
arises from alternative feedback structures and different levels of model
aggregation (e.g., lumped vs. semi-lumped conceptualizations). These
aspects should be investigated within the structural uncertainty frame-
work. SDMs are increasingly used in investigation of scenario uncer-
tainty. This is because SDMs are computationally light, so running
thousands of scenarios is feasible, which is promising for investigation of
uncertain futures e.g. through exploratory modeling approaches
(Kwakkel, 2017) applied to SDMs (Kwakkel and Pruyt, 2013).

Bayesian networks are intrinsically probabilistic and explicitly
model uncertainty through conditional probability tables (CPTs). Un-
certainty in conditional probabilities (arising from limited data, expert
judgment, or a priori parameter assumptions), can also be influenced by
structural uncertainty in the network. This structural uncertainty can
then propagate into parameter uncertainty, affecting the reliability and
robustness of the model. Therefore, through uncertainty analysis, the
variability of the parameters and the sensitivity of the outputs can be a
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measure of confidence in the Bayesian network results. In this context,
sensitivity analysis methods can be applied to investigate the effect of
individual variations to one or more parameter at a time
(Ballester-Ripoll and Leonelli, 2025).

Using the range of methodologies for uncertainty assessment
(Refsgaard et al., 2007; Walker et al., 2013), the degree of confidence in
model-based analyses of the future systems, and the communication of
that to decision-makers can be improved. For example, Miro et al.
(2021) explored a wide range of plausible future conditions, accounting
for deep uncertainties in water management and groundwater systems,
which resulted in a “more realistic safety margin” based on a broader
view of uncertainty, guiding actionable thresholds for future adaptation.
In the same study, due to challenges that e.g., model complexity adds to
computational demand in model runs, they implement ML approaches
to facilitate exploration of the uncertainty space.

We emphasize the need to explicitly incorporate uncertainty analysis
in model-based MAR studies to improve the robustness and relevance of
model outcomes for decision-making. A practical starting point is the
development of an Uncertainty Framework Table (UFT) (Kirchner et al.,
2021), that maps sources and pathways of uncertainty, from inputs
through model processes to outputs. This can be followed by adoption of
quantification approaches that align with the chosen modeling meth-
odology and the specific uncertainty sources identified, as briefly
mentioned in this section.

4.3. Water quality

While the primary focus of this review is on water quantity, it is
important to acknowledge the significance of water quality aspects in
MAR project planning and assessment (Vanderzalm et al., 2022). In
particular in local studies, solute transport or reactive transport models
have been applied to assess risks associated with introducing external
source water into ambient groundwater, as well as its interactions with
the aquifer matrix (Sun et al., 2020) or MAR’s potential to mitigate
regional groundwater quality deterioration (Guo et al., 2023; Sitek et al.,
2025). In addition, ML approaches can facilitate the prediction of water
quality and geochemical processes in groundwater systems (Haggerty
et al., 2023).

In large-scale studies, focusing on cross-sectoral impacts of MAR
applications, i.e., on other components of the integrated water system, is
a complex task, since it requires large-scale monitoring to evaluate the
effects of source water beyond the aquifer system, or the connected
surface waters. For example, Negev et al. (2017) traced water sources in
a Soil Aquifer Treatment (SAT) system using isotopic analysis along the
water-effluent-SAT chain, enabling a simple mixing equation to predict
isotopic compositions throughout the regional water system.

We therefore emphasize the importance of system-wide water
quality analysis and modeling in large-scale MAR projects and
encourage researchers to explore this further. Although beyond the
scope of this review, compiling such applications could provide valuable
insights for future integrated water management strategies.

4.4. A comprehensive picture

In Fig. 4, an overview of modeling objectives and methodologies in
MAR studies is provided, categorized by phase of analysis (planning,
design, operation, performance assessment) and spatial scale (local to
regional). The modeling approaches also reflect these various di-
mensions, based on the objectives and data availability at each scale. At
the local level, physically-based groundwater flow and transport models
are used across all MAR phases due to their ability to represent sub-
surface processes with high spatial and temporal resolution. These
models facilitate assessments of hydrogeological feasibility, residence
times, recovery efficiency, and operational optimization. While these
challenges are broadly relevant across different MAR types, their sig-
nificance and underlying mechanisms vary by each MAR approach.
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To further enhance predictive performance and simulation effi-
ciency, physically-based models may be integrated with machine
learning techniques, provided high-quality data are available. This
hybrid approach can offer improvements over numerical groundwater
models, particularly in complex or data-rich settings. Water balance
models also provide a high-level assessment regarding groundwater
management priorities (e.g. recharge feasibility, groundwater levels
with respect to demands) and changes in the water budget. Beyond the
initial planning, design, and operational phases, the performance
assessment of a MAR project is then complemented by key performance
indicators (KPIs) at both local and regional scales. These guide adjust-
ments to system design and operational strategies, and based on system
performance indicators, efforts for upscaling and replicability of MAR
can emerge.

At the regional scale, modeling shifts toward integrated approaches
that address broader planning and design objectives, which are relevant
across all MAR types. These include water allocation models, system
dynamics models, and Bayesian networks, which can incorporate socio-
economic and environmental factors, integrating hydrological and
anthropogenic water systems. Furthermore, coupling multiple modeling
methodologies or multiple subsystem models allows for the investiga-
tion of regional effects, while providing various levels of information.
For design purposes, MAR is often embedded within integrated water
supply systems, for which Decision Support Systems (DSS) and Inte-
grated Water Supply Models (Bach et al., 2014) can be utilized.
Furthermore, to assess feasibility of relying on MAR as an additional
supply source (increasing supply redundancy) and simulate the
real-time state of the regional water system components, coupled
models can benefit decision-making at the operational level, which re-
quires more spatiotemporally detailed model outcomes.

5. Conclusions, limitations, and future directions

This study was motivated by the ongoing shift in MAR applications
from local pilot projects to regional-scale implementations. We first
considered the dimensions of MAR cases at the regional scale, focusing
on water quantity aspects, and further asked the question: which
modeling methodologies are best suited to represent the connections
between MAR and the integrated hydrological-anthropogenic water
system? When these measures are replicated or scaled up, their in-
teractions with other components of the water system become signifi-
cant, introducing complexity that cannot be addressed by local-scale
approaches alone. To answer this question, we relied on examples in
literature, focusing on model-based analyses of regional MAR applica-
tions, with a focus on groundwater management and/or in relation to
demand satisfaction, while pilot-scale MAR studies without regional/
system-level implications were excluded from the reviewed articles.

The classifications presented in this review show trends observed in
the selected studies rather than comprehensive characteristics of all
MAR applications or modeling approaches. Additionally, this review did
not consider a temporal analysis of the evolution or prevalence of
different modeling methodologies, which could potentially be valuable
for representing research trends over time. Furthermore, the scope of
this review was limited to water quantity aspects and studies focusing
exclusively on water quality or geochemical processes, as well as non-
peer-reviewed sources were excluded. Although this choice was moti-
vated due to the ongoing water quantity challenges in MAR studies, it
may have excluded relevant insights from for example, groundwater
flow and solute transport modeling studies, or technical reports on MAR
applications. We acknowledge that the synthesis on the modeling
methodologies is constrained by the availability and reporting quality of
the reviewed studies, which may introduce bias in the representation of
modeling practices and their applicability to regional MAR contexts.
Expanding this review with additional literature in the future could help
refine and strengthen the insights presented here.

Based on the literature, the diversity of modeling approaches applied
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to regional MAR reflects differences in objectives rather than a uniform
attempt to represent the entire integrated water system. For example,
process-based models are often used to account for groundwater storage
changes, by treating demands and sources as static elements, whereas
holistic approaches such as system dynamics models explicitly incor-
porate variability in demand and source availability in combination
with the storage changes in the groundwater system and connected
surface water to support planning decisions. Water balance models on
the other hand provide a general picture of catchment water resources
and cover supply-demand portfolios. In these models, focus is less on
changing relationships and more on priorities of water allocation. In-
tegrated models of hydrological subsystems and anthropogenic pro-
cesses are another type of approach that allow investigation of
variabilities and focus on the interdependencies. They enable combi-
nation of features from multiple models to help with system-level
behavior exploration, providing enhanced spatial or process-based
representation.

A valid MAR analysis does not always require representation of the
full hydrogeological and anthropogenic system; what is critical is
aligning the model with the planning horizon, source water variability,
hydrological setting, and end-user context. Having these aspects clear,
modelers should rely on the differences and similarities between the
range of models reviewed here, in order to select suitable models based
on their data and computational constraints, while considering the
importance of capturing interdependencies and temporal regime
changes, especially as large-scale MAR projects reshape both hydro-
logical and anthropogenic systems. In the majority of the studies, this
aspect of the regional context is not considered. This review highlights
the importance of modeling approaches that facilitate this type of
investigation, and establishes criteria that help select appropriate
modeling approaches, ensuring choices are informed by the strengths
and limitations of each method.

Furthermore, while holistic and integrated models offer promising
avenues for considering long-term and cross-sectoral impacts, their
adoption remains limited due to computational complexity, data re-
quirements, and challenges in coupling diverse subsystems. Therefore,
future research should prioritize hybrid modeling frameworks that
combine the strengths of process-based or data-driven models together
in an integrated modeling scheme, towards enabling more robust sce-
nario analysis and uncertainty quantification. Parsimonious modeling
schemes such as system dynamics models can for example facilitate such
integrations. Additionally, policy and planning efforts should leverage
integrated models complementary to site-specific studies, to support
adaptive MAR strategies that ensure interventions are resilient to
climate variability and anthropogenic changes. Addressing these gaps
will enhance the relevance and applicability of MAR modeling for sus-
tainable groundwater management.

In addition, future studies should expand the scope of regional-scale
MAR analyses to include water quality modeling, or the combination of
water quality and quantity modeling, in order to uncover which di-
mensions of MAR influence system-level sustainability, trade-offs and
propagation of effects, particularly in cases involving reclaimed water or
complex source water interactions.
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