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• Classic MAR modeling often ignores 
regional water system-level 
interdependencies.

• Examples show integrated/holistic 
models’ potential to assess MAR 
regional impacts.

• Focusing on parsimony drives adoption 
of integrated models for sustainable 
MAR planning.
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A B S T R A C T

Groundwater resources are under increasing pressure due to water abstractions and climate change, leading to 
water scarcity problems and threats to groundwater-dependent ecosystems. Managed Aquifer Recharge (MAR) 
techniques offer a promising strategy for mitigating water scarcity problems and advancing sustainable man
agement of groundwater resources. These measures aim at intentional recharge and storage of water in aquifers 
by linking periods of surplus with periods of shortage to overcome the temporal imbalance. While MAR has 
traditionally been implemented at local scales, growing challenges related to water scarcity and groundwater 
depletion have led to their increasing adoption across broader regions. This shift highlights the need for modeling 
approaches that can adequately represent MAR within regional water systems, emphasizing interactions with 
both hydrological and anthropogenic components while allowing investigation of trade-offs when planning these 
measures. This paper provides an overview of the modeling methodologies used to assess MAR interventions in a 
regional context. We begin by discussing the inherent complexity of the effects of groundwater interventions 
such as MAR at the regional level, particularly regarding water quantity. We then look into a range of modeling 
approaches available in the literature to capture these complexities, based on the modeling objective, data 
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availability, and the required spatial and temporal scales. We further emphasize the importance of incorporating 
multiple levels of uncertainty throughout the planning and implementation of MAR projects and model-based 
analyses. Our study highlights that, despite their promise, integrated and holistic modeling approaches remain 
underutilized in groundwater research, including MAR, highlighting a need for broader development and 
adoption.

1. Introduction

1.1. Context

The changing climate over recent decades (Copernicus Climate 
Change Service & World Meteorological Organization, 2025) has caused 
significant stress on water resources across Europe (Bartholomeus et al., 
2023; Douville et al., 2021; Tabari et al., 2015), adversely affecting both 
surface and groundwater systems, and based on climate projections, 
more is yet to be expected. Groundwater resources, in particular, are 
under increasing pressure due to intensified abstractions and the im
pacts of climate change, contributing to water scarcity problems and 
threatening groundwater-dependent ecosystems. Moreover, secondary 
impacts such as salinization and disruptions to water availability across 
sectors including industry, energy, agriculture and drinking water sup
ply pose additional challenges (Deltaprogramme, 2023; Psomas et al., 
2021)

To address the challenges associated with groundwater resources, a 
range of strategies are being implemented. These include both demand 
side interventions such as water pricing (Portoghese et al., 2021) and 
water conservation campaigns, as well as supply side interventions such 
as restrictions on groundwater extraction (Theesfeld, 2010), land man
agement strategies, Nature-Based Solutions (NBS), and Managed Aquifer 
Recharge (MAR) (Zhang et al., 2020). While many of these measures 
have been implemented at local scales (Zheng et al., 2021), growing 
challenges related to water scarcity and groundwater depletion are 

driving their adoption across broader regions. This trend reflects tran
sition in water landscapes (Bartholomeus et al., 2023), as regions adapt 
to shifting hydrological conditions and recognize the need to upscale 
these implementations to large-scale solutions. This highlights the ne
cessity for coordinated management of groundwater and related re
sources, by clearly describing competing objectives and trade-offs, and 
balancing the needs and values of diverse stakeholders (Jakeman et al., 
2016). Especially at regional scales, this aspect becomes critical since 
different water users, such as urban, agricultural, industrial, and envi
ronmental sectors, face unique challenges and have dynamic needs such 
as varying requirements for timing, quantity, and quality of water, as 
well as vulnerability to shortages. At the same time, sources of supply 
such as groundwater and surface water each behave differently over 
various time scales (e.g., response times to changes such as rainfall or 
withdrawals), reflecting their distinct dynamics. This variability further 
complicates water management, as both sources are subject to complex 
and changing climatic and anthropogenic conditions.

In this context, by thinking in terms of interdependencies between 
water streams across sectors (Fig. 1), i.e., between the anthropogenic 
system (e.g. drinking water production, industry, urban areas, agricul
ture (irrigation) and wastewater treatment (Pronk et al., 2021)) and 
hydrological systems, we move beyond traditional “silo-thinking” (Bach 
et al., 2014). This integration helps identify what is and is not feasible 
when implementing measures across hydrological and urban water 
systems. However, despite being less frequently documented, the liter
ature does contain examples of where such implementations have 

Fig. 1. Integrated hydrological and anthropogenic water system. This figure illustrates the integrated water system including hydrological (in blue) and anthro
pogenic (in grey) components along with the processes (in green) that link them together, creating interconnections and dependencies. Various feedback loops are 
present between the hydrological and anthropogenic water system. The red arrow indicates MAR using treated wastewater, affecting flow to surface water and 
dependent services. IWTP: Industrial Water Treatment Plant, WWTP: Waste Water Treatment Plant. Adapted from (Stofberg et al., 2025)
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caused unintended consequences, i.e., “negative externalities” (Alam 
et al., 2022; Glendenninga and Vervoort, 2011). Thus, it is important to 
understand the interactions between infrastructural and policy mea
sures, in addition to how they influence hydrological and anthropogenic 
water systems, which can foster more sustainable planning and devel
opment (Di Baldassarre et al., 2018).

1.2. Managed Aquifer Recharge

Among the range of groundwater management strategies, Managed 
Aquifer Recharge (MAR) is widely recognized as an effective technique 
for addressing water scarcity and pressure on groundwater systems. 
MAR involves the deliberate recharge and storage of water in aquifers 
during periods of surplus, with the intention of recovering it during drier 
periods (Bouwer, 2002; Sprenger et al., 2017), delivering environmental 
benefits and supporting conjunctive use of multiple water sources (Van 
der Gun, 2020). As a result, it helps balance water availability across 
time and overcome temporal mismatches between supply and demand 
(Zhang et al., 2020).

To facilitate aquifer recharge, different sources of water such as 
storm water, surface water from rivers or lakes, treated wastewater, or 
groundwater from other aquifers can be utilized (Sprenger et al., 2017; 
Zhang et al., 2020). Combining these sources with MAR not only en
hances groundwater availability, but also creates interdependencies 
across the water system, where groundwater level dynamics become 
influenced by the variability of external sources such as surface water 
flows, stormwater, or reclaimed water inputs. This change also in turn 
can influence the timing, availability and management of the external 
sources. Therefore, whether a MAR scheme is urban-sourced (source 
water from anthropogenic water flows), urban-serving (benefiting urban 
populations), or non-urban (serving agricultural, environmental, or 
rural purposes with non-urban sources) determines the necessity of 
explicitly integrating anthropogenic water system dynamics into the 
decision-making process. For example, treated wastewater (urban-
sourced MAR) offers the advantage of year-round availability; however, 
conservation measures during droughts (due to its connection with 
surface water flows) may reduce the volume of treated effluent available 
for recharge (Dillon et al., 2022).

MAR applications can be assessed using different approaches 
depending on the objectives and scale of analysis. At site-specific level, 
different techniques such as geochemical and isotope tracer methods are 
widely employed during feasibility, design, and monitoring stages, and 
for evaluating MAR impacts. These methods provide critical insight into 
subsurface processes including spreading and mixing processes of the 
source water and the ambient groundwater (Ganot et al., 2018), resi
dence times and flow pathways, or sensitivity of subsurface flows to 
pumping regime and infiltrations rates (Moeck et al., 2017). They also 
provide information into water quality evolution in the ambient 
groundwater as a result of MAR implementation (IAEA, 2013), 
capturing fine-scale hydrogeological interactions. While these measures 
are invaluable in site-specific investigations, they can be limited in their 
ability to extrapolate beyond the measurement extent. In this context, 
tracer data can be used to inform models in order to extend such insights 
to broader spatial and temporal scales (Ganot et al., 2018), and testing 
alternative scenarios.

Therefore, modeling methodologies have proven useful in support
ing decision-making, as well as in understanding and evaluating these 
interventions. Ringleb et al. (2016) investigated field, laboratory and 
theoretical MAR case studies which applied commonly used software 
codes and tools, including groundwater flow, unsaturated flow, solute 
transport, reactive transport and watershed or water balance models to 
evaluate MAR applications. They classified the use of such process-based 
models with respect to MAR type. They concluded that groundwater 
flow models combined with solute or reactive transport algorithms are 
the most widely used for MAR assessments, especially for local 
(site)-scale feasibility, design and impact assessments.

In another study, Sallwey et al. (2018) conducted a comprehensive 
evaluation of unsaturated zone (vadose zone) models for assessing MAR 
through a review of 16 studies. The analysis underscored the critical role 
of these models in planning and optimizing MAR systems, as well as in 
quantifying MAR impacts on both the vadose zone and underlying 
groundwater. Similarly, Kloppmann et al. (2012) assessed the use of 
groundwater models for site selection, feasibility analysis, 
pre-dimensioning of the MAR system (Zuurbier et al., 2015) and design 
of the associated monitoring system, with a focus on water quality as
pects. Modeling studies have shown potential in assessing clogging 
occurrence (Lippera et al., 2023) and precise scheduling of recharge and 
recovery rates (Kacimov et al., 2016; Zuurbier et al., 2014). Despite the 
availability of various modeling approaches for assessing the feasibility 
and effectiveness of MAR applications, an overview of the model-based 
studies that explicitly represent MAR’s role within the broader water 
system (Fig. 1) remain limited. While previous reviews, such as Ringleb 
et al. (2016) and Sallwey et al. (2018), have focused on site-scale MAR 
modeling and feasibility assessments, and Kelly et al. (2013) outlined 
general modeling approaches for integrated environmental modelling, 
this manuscript extends those foundations, by bringing the focus to 
regional-scale MAR and its integration within complex water systems.

In their review, Ringleb et al. (2016) observed that watershed or 
water balance models, which partly consider an integrated water 
resource management approach, were applied in only a few cases, 
including in-channel modifications, rainwater harvesting and one case 
of well and borehole schemes. The authors emphasized the need for 
holistic models that allow integration of groundwater, surface water and 
unsaturated zone in MAR studies, leading to a more complete repre
sentation of the hydrological system - although they did not consider the 
inclusion of anthropogenic subsystems into model-based analysis of 
MAR cases.

More recently, the concept of Co-Managed Aquifer Recharge 
(European Commission, 2025) has been introduced to link MAR with 
multi-level governance through a participatory approach, aiming to 
enhance collective awareness of groundwater exploitation. Therefore, 
modeling approaches that facilitate this level of understanding should 
become tools not only for planners but also for MAR practitioners, 
enabling them to take initiative in understanding and managing MAR 
dynamics within the water system, considering both local conditions 
and consumptive flows, so that the sustainability of these interventions 
at the regional level can be ensured. These approaches offer valuable 
means to translate integrated thinking into quantitative tools that sup
port scenario analysis, stakeholder engagement, and informed 
decision-making.

Therefore, to understand the effectiveness of MAR strategies at the 
regional scale, and to investigate their cumulative effects (Ros and 
Zuurbier, 2017), models need to represent interactions within the inte
grated hydrological and anthropogenic water system, extending beyond 
groundwater alone. As shown in Fig. 1, MAR applications especially 
when combined with water reuse, lie at the interface between anthro
pogenic and natural water systems, by redirecting water from one source 
to the other, altering water flows and impacts across the hydrological 
and urban water systems. Accordingly, focusing on feedbacks and in
terconnections within the whole system is necessary to identify how the 
effects propagate, and investigate possible adverse consequences and 
trade-offs.

For instance, during MAR, injecting surface water, stormwater, or 
treated wastewater can reduce discharge to surface water, reflecting the 
trade-off between slow (subsurface) and fast (surface) hydrological 
processes, potentially delaying and shifting hydrological regimes 
(Ghasemizade et al., 2019). In addition, over long periods, increased 
water availability enables higher water demand, which can uninten
tionally lead to higher and unsustainable water resource exploitation (Di 
Baldassarre et al., 2018). Moreover, in some hydrogeological settings, 
the surface-groundwater interaction in MAR applications allows a dy
namic storage and redistribution between these resources. Therefore, 
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considering these interconnections leads to responsible implementation 
of groundwater management strategies such as MAR, through an inte
grated and systemic approach (Bartholomeus et al., 2023; Dingemans 
et al., 2020; Pronk et al., 2021)

1.3. Aim

The objective of this article is to provide insight into the methodol
ogies and modeling frameworks available for assessing the effectiveness 
and the impacts of MAR on the regional water system (Fig. 1), focusing 
on water quantity aspects. To achieve this goal, the paper goes beyond 
existing literature by: (i) classifying modeling approaches based on their 
ability to represent feedbacks, subsystem connectivity, and spatial- 
temporal contexts, (ii) synthesizing examples from MAR and other 
groundwater interventions to illustrate transferable modeling strategies, 
(iii) highlighting gaps in current MAR literature, especially regarding 
the lack of integrated assessments that include the combined effects 
within the water system. These classifications help further determine the 
relevant temporal and spatial scales, and show how multiple approaches 
can be adapted or combined to support integrated assessment (Fig. 2) for 
MAR.

Moreover, we aim to contribute to the existing understanding of 
MAR phases and objectives at local and regional scales by identifying 
which models are best suited for specific contexts. To this aim, we build 
on insights from previous review studies in this domain.

2. Methods

We present the methodology employed towards assessing different 
modeling approaches available for studying MAR applications at the 
regional scale. This includes a set of criteria, defined to guide the 
assessment and comparison of the available approaches, with a focus on 
their capacity to simulate interacting processes and feedbacks within the 
integrated hydrological and anthropogenic water systems, as also indi
cated in Fig. 1.

Furthermore, we draw on case studies from peer-reviewed journals 
and conference proceedings, and employ a snowballing strategy by 
examining the reference lists of previously identified publications. These 
studies were retrieved via Google Scholar and Scopus using a combi
nation of search keywords, including “MAR”, “artificial recharge”, 
“modeling”, and “integrated model”. The inclusion criteria for the sub
sequent choice of articles were: (i) a focus on model-based analyses, 
particularly those addressing the regional dimensions of MAR applica
tions, (ii) aimed at groundwater management and/or in relation to de
mand satisfaction, (iii) focusing on the use of integrated or holistic 
models (Fig. 2), (iv) studies published in English. Therefore, pilot-scale 
MAR studies without regional/system-level implications were excluded 
from the reviewed articles. Studies focusing exclusively on water quality 
or geochemical processes without water quantity modeling, non-peer- 
reviewed sources (e.g., reports, grey literature) and studies without a 
modeling component were also excluded. For each selected study, we 
extracted key attributes: modeling methodology, subsystems repre
sented, MAR phase addressed, source water type, and the five criteria 
from Section 2.1 (objective, spatial and temporal scale and resolution, 
connectivity of subsystems, and degree of abstraction). These elements 
informed the comparative analysis in Table 1. The examples were cho
sen for their thematic relevance and their potential to reflect real-world 
implementation of MAR within the complex regional water system. 
Overall, 22 studies were collected, and were assessed against the criteria 
mentioned below.

2.1. Criteria

Here, we present the criteria used for assessing the applicability of 
various modeling approaches for holistic assessment of MAR within a 
regional context, focusing on the integrated water system shown in 

Fig. 1. The following criteria, explained below, guide the selection of the 
modeling approaches: 

• Model application
• Spatial scale and resolution
• Temporal scale and resolution
• Connectivity of subsystems
• Degree of abstraction

These criteria are not meant to be considered in isolation; rather, 
they reflect model features that are related and often require trade-offs. 
For example, the purpose of model application might call for a high level 
of spatial detail, but this could be constrained by computational limi
tations or data availability associated with a certain degree of abstrac
tion. The modeler might therefore make a choice based on the most 
limiting factor.

2.1.1. Model application
The purpose for which a model is employed is the primary driver in 

selecting the appropriate modeling approach, as it defines the questions 
to be answered. Clearly defining the model’s intended application 
guides the inclusion of processes and parameters, as well as the choice of 
spatial and temporal resolution and the required level of abstraction. In 
MAR contexts, whether models are applied to facilitate planning, design, 
or operational decisions also influences these choices to ensure they 
align with the objectives of the analysis.

2.1.2. Spatial scale and resolution
Hydrogeological and anthropogenic processes in water systems 

function across multiple spatial scales, necessitating models that can 
accurately capture scale-dependent dynamics. The spatial resolution of 
these models critically affects their accuracy and relevance, depending 
on study objectives. Various spatial representations have been used in 
modeling the underlying hydrogeological and anthropogenic processes. 
Commonly, they are classified as distributed (i.e., the model considers 
spatial variations in process representation), lumped (i.e., the spatial 
domain is treated in an aggregated or averaged manner), and semi- 
distributed (i.e., the modeling domain is divided into sub-sections that 
are internally homogeneous, but externally distinct).

2.1.3. Temporal scale and resolution
Temporal scale and resolution are critical considerations in modeling 

of the integrated water system, as different subsystems (e.g., ground
water vs. river flow) respond over varying timeframes. In addition, the 
dynamics of anthropogenic components are dependent upon climatic 
conditions, industrial and agricultural productions, human consumption 
patterns, and supply availability, among other factors. This variability 
complicates selection of the modeling methodology that integrates 
proper temporal dynamics, particularly when assessing the impacts of 
interventions. The choice of temporal scale (i.e., horizon) and resolution 
should align with the study’s objectives to ensure key processes are 
captured. Models typically treat time in three ways: steady-state 
(assuming equilibrium conditions and neglect temporal changes); lum
ped, discrete temporal models (which produce output for a single time 
period, e.g., an average groundwater storage value over 30 years); and 
dynamic quasi-continuous models (which generate output at each time 
step, producing a time series of the output variable) (Kelly et al., 2013). 
With regard to the temporal scale of analysis, the models may be applied 
across four time horizons: near real-time (minutes to several days), 
short-term (weeks to months), medium-term (1–30 years), and 
long-term (30–100 years).

2.1.4. Connectivity of subsystems
Models of the integrated natural and anthropogenic water systems 

(Fig. 1) represent the interactions between system components either as 
one way (cause-effect) or feedback (two-way) connections. The ability 
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to incorporate feedbacks, which is crucial in complex systems (Sec. 2.1), 
is a key modeling criterion. In Water Evaluation and Adaptation Plan
ning (WEAP) (Stockholm Environment Institute, 2025), for example, 
water availability constrains supply, which limits delivery volumes to 
users. However, demand is typically predefined and does not adjust 
dynamically within a single model run based on delivered volumes, 
indicating a lack of internal feedback between water availability and 
demand regulation. Such feedbacks need to be explicitly included 
through customized modifications. In addition, incorporation of feed
back processes allows to incorporate nonlinearities in boundary condi
tions of the system, as opposed to static ones.

2.1.5. Degree of abstraction
Due to the complexity of the integrated hydrological and anthropo

genic water system, the degree to which a model simplifies the real 
world can vary significantly (Moradkhani and Sorooshian, 2008). This 
depends on factors like the modeler’s experience (Beven, 2012), data 
availability, and the required level of detail (spatial, temporal). These 
aspects are captured by the term degree of abstraction,1 which reflects 
how much real-world processes are aggregated in the model. This often 
involves using generalized relationships in order to represent multiple 
functional elements as single, composite units. Therefore, a low degree 
of abstraction offers a detailed representation (Borshchev and Filippov, 
2004), whereas a high degree of abstraction corresponds to a more 
simplified and generalized representation (less detail). Additionally, 
more detailed (less abstract) models typically require more data and 
computational resources.

3. Overview of modeling approaches

This section presents an overview and classification of the modeling 
approaches used in the reviewed literature to study MAR within regional 
water systems.

In order to connect modeling choices with MAR planning and prac
tice, we describe the underlying mechanisms in each modeling method, 
and how it aligns with decisions across MAR phases and scales (site to 
region). Although many methods originate from general hydrogeology 
or systems modeling, their adoption for MAR is relevant by considering; 
e.g., process-based models for site-scale feasibility and design analyses 
(Ringleb et al., 2016; Sallwey et al., 2018), water balance/allocation 
tools for catchment-scale portfolio and reliability planning (Clark et al., 
2015; Gómez et al., 2006), and holistic/integrated models for regional 
assessments and planning, involving anthropogenic-hydrologic systems 
(Ghasemizade et al., 2019; Hanson et al., 2014).

3.1. Numerical process-based groundwater models

Numerical process-based groundwater models, including ground
water flow, unsaturated (vadose zone) flow, solute transport, and 
reactive transport models have been widely used in MAR projects 
(Ringleb et al., 2016). These models allow flexible spatio-temporal 
representation of hydrological system processes, provided that proper 
data on system properties is available for model calibration. In local 
scale assessments, model design/or choice must reflect the processes and 
subsystems relevant to the specific MAR technique (surface spreading, 
in-channel modifications, well/shaft/borehole recharge, bank filtration, 
rainwater harvesting (Sprenger et al., 2017)). For instance, Sallwey et al. 
(2018) emphasized the critical role of unsaturated zone (vadose zone) 
models for assessing MAR, particularly MAR techniques that directly 
interact with the unsaturated zone, such as surface spreading, 
in-channel modifications, and subsurface recharge via wells, shafts, and 
boreholes. This is relevant for system design and evaluating impacts on 
both the vadose zone and underlying groundwater. At regional scales, 
the vadose zone remains a key connector between the surface and 
groundwater, and should be taken into account, as it contributes largely 
to recharge, and evapotranspiration (Stewart et al., 2025). However, 
extending detailed vadose-zone representations to large-scale models is 
challenging due to data and computational constraints, in addition to 
scaling issues particular to these processes (Harter et al., 2004).

Similar challenges apply to other physically-based models (e.g., 
groundwater flow and transport models), since they often provide a 
lower degree of abstraction in representing hydrogeological processes, 
which in turn requires extensive parameterization and computational 
resources at regional scales or for long-term temporal analysis. These 
limitations are less restrictive when high-quality data and sufficient 
computational resources are available. Focusing on the integrated hy
drological and anthropogenic water system, numerical distributed 
groundwater models often consider the components of the anthropo
genic system as exogenous factors to the modeled groundwater system 
and MAR setting (Banton and Klisch, 2007; Jovanovic et al., 2017), 
which could restrict the model’s ability to simulate dynamic interactions 
between these subsystems and allowing an integrated representation of 
MAR systems. Therefore, the dynamics of urban-sourced and 
urban-serving MAR can be misrepresented when only process-based 
models of the hydrological system are applied for the analysis.

3.2. Lumped/semi-distributed water balance modeling

Water balance models have been used to improve the understanding 
of the variables in the hydrological system, and parameterize their re
lationships, useful for investigating a range of hydrological problems 
(Xu and Singh, 1998). In these models, the level of complexity and 
parametrization strongly depends on the objective of the study, and data 
availability. In the context of water resources management, a water 
balance can indicate the water flows into the catchment including up
stream inflow, imported water sources, etc., which are primarily the 

Fig. 2. Definitions of Integrated assessment, holistic and integrated modeling.

1 Note that “abstraction” here differs from its use in water resources, where it 
refers to groundwater extraction.
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Table 1 
Classification and description of model-based regional MAR studies according to the criteria in Sec. 2.2.

Modeling methodologies References Treatment of space Treatment of time Endogenous subsystems Model 
objective

MAR 
phase

Source 
water

Lumped Semi- 
distributed

Distributed Steady- 
state

Aggregate 
values

Dynamic GW SW AW Agr SE

Process- 
based 
models

GW flow models Banton and Klisch 
(2007)

​ ​ ☑ ​ ​ short-term ✓ ✓ ​ ​ ​ GWM PA SW

Jovanovic et al. 
(2017)

​ ​ ☑ ​ ​ medium- 
term

✓ ✓ ​ ​ ​ GWM PA StW, 
TWW

Pavelic et al. (2004) ​ ​ ☑ ​ ​ medium- 
term

✓ ​ ​ ​ ​ DES, GCP DES StW, 
TWW

S. Liu et al. (2024) ​ ​ ☑ ​ ​ medium- 
term

✓ ​ ​ ​ ​ GWM PA SW

Zakir-Hassan et al. 
(2025)

​ ​ ☑ ​ ​ medium- 
term

✓ ✓ ​ ​ ​ GWM PL StW

Scanlon et al. (2025) ​ ​ ☑ ​ ​ long-term ✓ ✓ ​ ​ ​ GWM PA SW, StW, 
TWW

Water balance models Lindhe et al. (2020) ☑ ​ ​ ​ ​ medium- 
term

✓ ✓ ✓ ​ ​ Dem PL SW

Glendenninga and 
Vervoort (2011)

​ ☑ ​ ​ medium- 
term

​ ✓ ✓ ​ ✓ ​ GWM- 
Dem

PA RW

Water Allocation models Clark et al. (2015) ​ ☑ ☑ ​ ​ long-term ✓ ✓ ✓ ​ ​ Dem PL TWW
Gómez et al. (2006) ​ ☑ ☑ ​ ​ short-term ✓ ✓ ✓ ✓ ​ GWM- 

Dem
PL SW

Berredjem et al. 
(2023)

☑ ​ ☑ ​ ​ long-term ✓ ✓ ✓ ✓ ✓ Dem – ND

Holistic 
models

SDM Zanjanian et al. 
(2024)*

☑ ​ ​ ​ ​ ​ ✓ ​ ✓ ✓ ✓ GWM- 
Dem

– –

Balali and Viaggi 
(2015)*

☑ ​ ​ ​ medium- 
term

​ ✓ ✓ ✓ ✓ ✓ GWM – –

Bates et al. (2019)* ☑ ​ ​ ​ medium- 
term

​ ✓ ✓ ​ ✓ ✓ GWM – –

Niazi et al. (2014) ​ ☑ ​ ​ ​ long-term ✓ ✓ ​ ✓ ​ GWM- 
Dem

PL SW

Zhao and Boll 
(2022); Zhao et al. 
(2021)

☑ ​ ​ ​ ​ long-term ✓ ✓ ✓ ✓ ✓ GWM- 
Dem

PL SW

DBN Molina et al. (2013)* ☑ ​ ​ ​ long-term ​ ✓ ​ ​ ✓ ✓ GWM – –
BN Sušnik et al. (2013) ☑ ​ ​ X ​ ​ ✓ ​ ✓ ✓ ✓ GWM- 

Dem
PL TWW

Portoghese et al. 
(2013)*

☑ ​ ​ ​ long-term ​ ✓ ​ ​ ✓ ✓ GWM – –

Integrated 
models

SDM-GW model Chang et al. (2010) SDM ​ GW flow 
models

​ ​ medium- 
term

✓ ✓ ✓ ✓ ​ GWM- 
Dem

PL SW

SW-GW flow model Ghasemizade et al. 
(2019)

​ ​ ☑ ​ ​ long-term ✓ ✓ ✓ ✓ ​ GWM- 
Dem

PA StW

Water allocation - GW flow 
-Hydrological - 
Geochemical models

Palma et al. (2015) ​ ​ ☑ ​ ​ long-term ✓ ✓ ✓ ✓ ​ GWM- 
Dem

PL TWW

Water allocation -GW flow 
models

Niswonger et al. 
(2017)

​ Water 
allocation 
model

GW flow 
model

​ ​ medium- 
term

✓ ✓ ​ ✓ ​ GWM- 
Dem

PL SW

MF-Onewater Hanson et al. (2014) ​ ☑ ☑ ​ ​ long-term ✓ ✓ ✓ ✓ ​ GWM- 
Dem

PL RW, 
TWW

Multiple water balance 
models

Guyennon et al. 
(2017)

☑ ☑ ☑ ​ ​ long-term ✓ ​ ✓ ✓ ​ GWM- 
Dem

PL SW

(continued on next page)
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sources of water supply. System outflows may consist of surface water, 
in addition to the different water demands. Therefore, these models can 
provide a holistic quantification of both hydrological and anthropogenic 
components of the water system and evaluate temporal and spatial 
patterns of water supply and demand, whether represented in lumped, 
or semi-lumped formats. They can support the evaluation of changes in 
flow patterns following the implementation of interventions such as 
MAR.

In addition to case-specific models developed based on the water 
balance concept (Glendenninga and Vervoort, 2011; Lindhe et al., 
2020), some commonly known PC-based water allocation and planning 
tools such as WEAP (Stockholm Environment Institute, 2025), AQUA
TOOL (https://aquatool.webs.upv.es) and Water Community Resource 
Evaluation and Simulation System (WaterCress) (CSIRO Land and 
Water, 2025) have also been used to assess the potential of MAR ap
plications as a reliable supply source in the catchments (Berredjem et al., 
2023; Clark et al., 2015; Gómez et al., 2006; Simonovic, 2002). They 
often represent different components of the system, such as catchment 
hydrology, storage elements, diversions, treatment centers, waste flows 
and customer demands. These models also include features for economic 
analysis.

3.3. System dynamics modeling

System Dynamics Modeling (SDM) is a methodology rooted in sys
tems theory, appropriate for understanding non-linear behavior of 
complex systems (Simonovic, 2020). It focuses on how system behavior 
emerges from internal structures and functions (Forrester, 1961; Ster
man, 2000), assessing how changes within endogenous elements influ
ence system-wide dynamics (Simonovic, 2002). As a top-down method, 
SDM relies on causal thinking and feedback loops (balancing or rein
forcing) to model system dynamics. A key step is creating a Causal Loop 
Diagram (CLD), a qualitative, expert-informed tool that maps feedback 
and cause-effect relationships (Mirchi et al., 2012), which is refined 
iteratively as system understanding improves (Sušnik et al., 2012).

The quantitative simulation model is constructed by translating the 
CLD into interconnected components (stocks), linked together with flows 
and both influenced by auxiliaries (parameters). In this conceptualiza
tion, stocks represent accumulated state variables (e.g., water) driven by 
inflows and outflows of quantities over time, with system dynamics 
simulated using ordinary differential equations. SDM is generally not 
well-suited for spatial representation of system components, since it uses 
aggregated (lumped) stocks that represent system behavior over a study 
region. However, in some cases, SD has been enhanced though combi
nation with GIS tools to incorporate spatial representation (Neuwirth 
et al., 2015; Niazi et al., 2014). Alternatively, semi-lumped configura
tions within SD structures have been developed to simulate groundwater 
levels more efficiently, while allowing representation of nonlinearities 
from other components of the water system (Roach and Tidwell, 2009). 
SDM can flexibly integrate physical (e.g., hydrological, environmental) 
and non-physical (e.g., social, economic) subsystems (Phan et al., 2021) 
as endogenous elements of a unified model, enabling holistic assess
ment. This methodology has been applied to a range of environmental 
and water resource issues (Phan et al., 2021), including groundwater 
management cases (Afruzi et al., 2021), though less frequently, such as 
assessments of how MAR (Niazi et al., 2014; Zhao et al., 2021), water 
pricing and water saving policies (Balali and Viaggi, 2015; Zanjanian 
et al., 2024), and irrigation constraints (Secci et al., 2024) affect 
groundwater availability and supply-demand balance. It allows simul
taneous analysis of objectives, revealing trade-offs and feedbacks often 
missed when components are modeled separately. In MAR planning, the 
inclusion of feedback processes is important, especially when addressing 
long-term sustainability and resilience of the water system (Zhao and 
Boll, 2022; Zhou et al., 2025). Emergence of behaviors from interacting 
feedback loops is one of the features of SDMs which allows the inves
tigation of process dominance (reinforcing or balancing the overall Ta
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system state) in time.

3.4. Agent-based models

Agent Based Models (ABMs) are bottom-up approaches (Berglund, 
2015), where behavior at system-level emerges from the interaction of 
low-level, individual components (agents) with each other and with a 
shared environment. Agents update their state characteristics based on 
rules of behavior at each time step, based on the interaction with other 
agents, or towards satisfying a goal related to the shared environment.

This methodology is useful for studying feedbacks between social (e. 
g. hierarchical decisions, learning, the dynamics of multiple stake
holders) and physical systems (hydrological and urban system). Similar 
to SDMs, ABMs are often used to facilitate system understanding across a 
range of parameter settings and to generate scenario-based insights. 
However, both ABMs and SDMs share a common limitation in precise, 
point-in-time predictions (Berglund, 2015) particularly in systems 
involving human behavior and decision-making. Therefore, applying 
ABMs in groundwater management studies requires data on how people 
make decisions, adapt, and coordinate, as these behaviors influence 
system states (e.g., groundwater availability). Such data are essential for 
calibrating and validating the models for predictive applications. 
Moreover, ABMs allow for spatial representation through agent char
acterization. Recent application of ABMs to groundwater systems has 
increased (Canales et al., 2024), due to the importance of assessing 
decision-making on groundwater systems such as decentralized 
(household level) injection of harvested rainwater for MAR (Bolton and 
Berglund, 2023). These approaches can be used in combination with 
other models of the hydrogeological system (See Sec. 3.3), to represent 
the feedbacks between human behavior and groundwater conditions at 
each time step.

3.5. Bayesian networks

Bayesian Networks (BNs) (Pearl, 1988) have been widely used for 
knowledge representation and reasoning of complex systems under 
uncertainty. They consist of directed acyclic graphs (DAGs), where 
nodes represent variables and edges indicate dependencies. These de
pendencies are quantified using Conditional Probability Tables (CPTs), 
which support probabilistic inference of variable states. DAGs and CPTs 
can be build using stakeholders and expert knowledge, empirical data, 
simulations, or a combination of these (Phan et al., 2016). Unlike SDM 
and ABM methods, BNs are not inherently designed to capture dynamic 
feedback loops, and since they represent system state under stationary 
conditions, they are not well suited for capturing the dynamics of a 
system over time. On the other hand, the ability of BNs to effectively 
represent stochasticity in systems is what makes them particularly 
valuable tools in the context of water resource management and envi
ronmental problems. In particular, Sušnik et al. (2013) compare the 
applicability of this methodology and SDM for water management 
through artificial recharge of treated effluent combined with 
demand-side policies. The study highlights their complementary roles in 
analyzing different aspects of system-wide policy impacts on a stressed 
aquifer.

To allow BNs to capture transient system states, Dynamic Bayesian 
Networks (DBNs) (Kjærulff, 1995) were introduced, which rely on time 
slicing, in which networks representing multiple time domains are 
linked together. This enables the representation of the evolution of 
conditional probabilities (system stochastic outcomes) over the time 
period of analysis. For example, Molina et al. (2013) applied this 
methodology to assess the temporal evolution of a stressed groundwater 
system under climate change impacts. However, one disadvantage of 
BNs, similar to SDMs, is that the model structure can become overly 
complex, which adds to the need for more data to formulate the CPTs 
(Govender et al., 2022; Phan et al., 2016). Moreover, the probabilities 
and dependencies are constrained by the quality and availability of the 

data used for their calculation.

3.6. Integrated models (hybrid methodologies)

Another approach for modeling complex systems is coupling 
different modeling methodologies to create an integrated representation 
of the system. This either includes (i) the integration of different sub
system models together into a unified model (Kelly et al., 2013), or (ii) 
the combination of different approaches (SDM, ABM, BNs, process-based 
models of each subsystem) or other modeling methodologies such as 
Machine Learning (ML) models (Tripathy and Mishra, 2024), leveraging 
their respective strengths. Model integration can be either achieved 
through loose coupling, where outputs from one model feed sequentially 
into another without feedback (Bolton and Berglund, 2023), or tight 
coupling, where models exchange inputs and outputs within each time 
step through feedback loops (Boyce et al., 2020).

Integrated models are generally highly complex, reflecting the 
complexity of the sub-models from which they are constructed. This 
adds to their computational demand and data requirements. Integrated 
models enable the coupling of existing subsystem models, simplifying 
setup by avoiding the need to build from scratch. This is especially useful 
in loosely coupled models, where sub-models can be calibrated and 
validated independently. However, there is ongoing debate about how 
errors from individual sub-models propagate once integrated (Bach 
et al., 2014). This type of integrated modeling allows for multi-scale 
representation of processes within the integrated water system.

An example of an integrated model is MODFLOW One-Water Hy
drologic Flow Model (MF-OWHM) (Boyce et al., 2020), a process-based 
distributed model for demand-driven, supply-constrained conjunctive 
use. It supports regional analysis of MAR (Hanson et al., 2014), by 
simulating infiltration, recharge rates, groundwater levels, and water 
availability response to recharge strategies, within a unified system. The 
authors emphasize that this integrated approach was essential for 
analyzing coupled flows that would be difficult to estimate otherwise. In 
another study, Bolton and Berglund (2023) combined a groundwater 
flow model with an agent-based model to evaluate a micro-trading 
rainwater program for urban aquifer recharge. Consumers and pro
sumers interacted with a MODFLOW model via negative and positive 
pumping rates, respectively, simulating the program’s impact on 
groundwater levels. L. Liu et al. (2024) used the Water Systems Inte
grated Modeling Framework (WSIMOD) for flux tracking in ground
water for abstraction management. WSIMOD is a modeling framework 
for integrated water management in terms of water quality and quantity 
problems (Dobson et al., 2023) and it simulates interactions across water 
system components (modeled as nodes connected by arcs conveying 
water and pollutants) addressing both quantity and quality. Feedbacks 
are incorporated via data exchange or rule-based triggers. WSIMOD’s 
parsimonious representation and flexible architecture can allow for the 
integration of both anthropogenic and hydrological systems.

3.7. Integration with machine learning approaches

Machine learning (ML) methodologies are used to identify patterns 
and make predictions based on empirical data (Ahmed et al., 2024). 
Some ML methods are used to learn the relationships between input 
variables (e.g., rainfall, soil-types, pumping rates) and outputs (e.g., 
groundwater levels, river discharges). As such, they are powerful tools to 
study complex non-linear relationships in datasets, without prior 
knowledge of underlying physical laws. Contrary to physically-based 
models which require high quality estimates for a limited number of 
parameters (which may be spatially and/or temporally varying, adding 
to the data requirements), ML methods (especially the more complex 
ones) can tolerate lower quality data, although needed in greater 
numbers. The physically-based models encapsulate system behavior in 
theoretically sound equations, which are fundamentally correct if 
properly chosen; whereas ML models depend entirely on having seen 
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sufficient training data. These differences also highlight the various 
sources and types of uncertainty inherent in each modeling approach.

ML methodologies (a key class of data-driven approaches) have 
become valuable tools in water resources disciplines (Tripathy and 
Mishra, 2024) and groundwater management (Rajaeea et al., 2019). ML 
methodologies have shown promise in evaluating MAR performance, 
particularly in addressing local-scale challenges (Sheik et al., 2024). 
This includes prediction of groundwater levels (Bai and Tahmasebi, 
2022; Dai et al., 2024; Fernandes et al., 2024; Rajaeea et al., 2019), and 
clogging (Chew et al., 2024).

In the regional context, ML methods can be combined with holistic 
approaches to improve the representation of the subsystems, while 
allowing representation of system-level behavior and dynamics. For 
example, Secci et al. (2024) combined the use of SDM, and a surrogate 
ML model (i.e., a simplified, data-driven approximation of a complex 
physical model) for a fast calculation of groundwater levels. Comple
mentary to this model, effects of system-wide conditions and constraints 
in irrigation management and pumping restrictions can be assessed 
using the SDM.

Recent studies have shown growing interest in hybrid methodolo
gies, including combinations of data-driven and process-based ap
proaches (Schweidtmann et al., 2024), as well as integration of different 
machine learning techniques and other statistical methods (Ahmed 
et al., 2024). These hybrid approaches have been employed to improve 
prediction accuracy, provide explainability, and improve generalization 
(Tripathy and Mishra, 2024). Moreover, the integration of ML methods 
and process-based approaches provides better interpretability to model 
performance, which is one of the shortcomings of ML approaches. 
Despite the advantages of machine learning methods in hydrogeological 
contexts, they remain highly dependent on data availability. This means 
that more complex models typically require larger and more diverse 
datasets. Additionally, overfitting, where a model becomes overly 
tailored to the training data, capturing noise or irrelevant patterns, poses 
a significant risk, potentially compromising the model’s performance on 
unseen or future data. In addition, these models are often constrained by 
their low capacity to extrapolate beyond the training data, posing 
challenges in transient and non-stationary environmental systems (Bai 
and Tahmasebi, 2022), especially in hydrological and anthropogenic 
water systems under changing climate and socio-economic conditions.

3.8. Examples in literature

Table 1 presents 22 examples of model-based analyses of MAR 
applied in regional contexts. These examples are categorized according 
to the modeling methodologies described in the previous section further 
grouped into process-based models, holistic models and integrated 
models. For each case, the table provides information on the objective of 
the analysis, the subsystems included in the models (as outlined in 
Fig. 1), and the phase of the MAR project addressed; planning, design, 
operation, or performance assessment. Additionally, the spatial and 
temporal scales of the modeling approaches are also included. 
Furthermore, the information on the source water used for aquifer 
recharge is presented in the table, which represents whether or not the 
model-based analysis considers the source variability, an aspect that is 
essential especially in urban-sourced MAR.

Table 1 presents various regional, large-scale MAR examples 
assessed using groundwater flow models. Although this review focuses 
on model-based analyses that incorporate cross-sectoral components of 
MAR, these examples are included to offer a comparative framework 
alongside more holistic and integrated modeling studies. We should 
further mention that the number of examples provided for each 
modeling approach is not intended to reflect their overall prevalence or 
frequency of application. Rather, they were selected to illustrate how 
each approach is applied in practice.

We can observe that regional-scale integrated/holistic modeling 
studies that focus on water quantity aspects of MAR and treated 

wastewater as the source water remain limited. This was notable even 
though the search terms explicitly included treated wastewater, water 
reuse, and reclaimed water in the context of MAR and model-based 
regional analyses. This observed gap can be partly attributed to regu
latory constraints. In many countries, strict regulations govern the direct 
or indirect use of reclaimed water, which may limit its adoption at a 
regional scale, discouraging its large-scale implementation. However, 
treated wastewater sources have been combined together with other 
sources of water for replenishment projects (Hanson et al., 2014; 
Jovanovic et al., 2017; Pavelic et al., 2004; Scanlon et al., 2025).

Process-based, distributed groundwater models are commonly used 
in regional applications, but they usually represent the hydrological side 
in detail and keep anthropogenic subsystems exogenous or simplified, 
even in cases where the source water is from the anthropogenic system 
(Zakir-Hassan et al., 2025). That limits feedbacks between human water 
use and groundwater in a single run.

We can also observe that despite the lower flexibility of water bal
ance and allocation models in explicitly representing feedbacks, they 
have been applied in assessment of MAR with surface water (Lindhe 
et al., 2020) or stormwater (Glendenninga and Vervoort, 2011), since 
they implicitly consider feedbacks between surface and groundwater 
systems, although with a higher degree of abstraction in comparison to 
coupled surface-groundwater models (Niswonger et al., 2017). This may 
also reflect the MAR community’s greater familiarity with these models. 
In addition to the examples of model-based regional MAR, Table 1 in
cludes studies (7 in total, marked with an asterisk) where integra
ted/holistic modeling approaches have been successfully used in other 
groundwater interventions such as water pricing (Balali and Viaggi, 
2015), domestic water-saving policies (Zanjanian et al., 2024), 
nature-based solutions (Liu et al., 2023), and irrigation policies (Molina 
et al., 2013; Portoghese et al., 2013; Secci et al., 2024). Analyzing the 
water quantity aspects of these interventions using such models is 
particularly relevant, since similar to MAR, they impact multiple com
ponents of the integrated hydrological and anthropogenic water system. 
These models have proven valuable in simulating medium- and 
long-term, system-wide effects, offering insights that can similarly 
inform sustainable application of MAR strategies.

The classification in Table 1 does not include MAR type (e.g. based 
on the classification by Sprenger et al. (2017)) because, at regional 
scales, model selection is primarily driven by system-level objectives, 
such as contribution to groundwater management, supply-demand 
satisfaction, and interaction with other components of the integrated 
water system (Fig. 1), rather than the operational details of a specific 
MAR scheme. This contrasts with local or site-specific studies, where 
MAR type strongly influences the choice of process-based models due to 
differences in infiltration dynamics, recharge mechanisms, and opera
tional constraints. Nevertheless, when practitioners aim for integrated 
modeling of the regional system, site-scale process models can be 
coupled with surface water, urban drainage, or allocation models to 
capture feedbacks and assess long-term sustainability under varying 
scenarios (Ghasemizade et al., 2019; Palma et al., 2015). Including 
non-MAR examples in Table 1 therefore serves as a guide, illustrating 
both the need and feasibility of integrated modeling approaches for 
MAR planning and assessment, particularly in large-scale cases.

Furthermore, the reviewed studies indicate that at the regional scale, 
physically-based distributed groundwater models are primarily applied 
for analyses up to medium-term time horizons (Fig. 3). This is under
standable, given their often high computational demands. While long- 
term analyses using these models are also performed (Scanlon et al., 
2025), they typically explore a limited range of future scenarios. How
ever, if sufficient computational resources are available, a broader set of 
scenarios can, of course, be simulated. Similarly, ML models are used for 
near real-time, short-, and medium-term analyses. As discussed in Sec. 
3.4., these models struggle with extrapolations, which poses challenges 
for long-term simulations, even when large historical timeseries data is 
available. Integrated models, consisting of process-based or ML models 
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of subsystems involved in the integrated water system (as illustrated in 
Fig. 1), SDMs and DBNs, are often used in regional studies and for 
medium-to long-term planning. Their lumped or semi-distributed 
feature makes it more feasible to simulate a wide range of future sce
narios and incorporate nonlinearities across the broader system. These 
models enable analysis of the bulk components of the water system in an 
aggregated manner. However, it is important to remain aware of the 
types of feedback mechanisms they can (or cannot) represent.

4. Discussion

4.1. Comparison of the integrated and holistic modeling approaches

Table 2 compares the strengths and limitations of the modeling ap
proaches used for the assessment of MAR regional objectives, with 
regards to the temporal and spatial scale and resolution, their flexibility 
to incorporate feedbacks, and model complexity. Such a comparison 
allows for a more informed decision for the choice of appropriate 
methodologies, fit to the specific type of application and goal. In addi
tion, a comparative view of each approach’s strengths reveals oppor
tunities for integration and strategic coupling of the different methods to 
improve predictive capabilities, while offering deeper insights into 
system behavior.

For instance, ML models can significantly improve computational 
time in groundwater level predictions resulting from MAR imple
mentation (Fernandes et al., 2024), enabling exploration of multiple 
scenarios often constrained by physically-based models. Although ef
forts have been made to couple multiple subsystem models to better 
capture interconnections and feedbacks (Palma et al., 2015), these ap
proaches are computationally expensive (Wardropper and Brookfield, 
2022). This is due to their low level of abstraction in representing sub
systems, which increases the complexity of iteratively running 

integrated models. Machine-learning approaches that bypass the com
plexities of distributed groundwater models while still properly repre
senting groundwater dynamics (Miro et al., 2021) can significantly 
improve integrated modeling (Shen, 2018).

In addition, attempts have been made in coupling holistic modeling 
techniques with more detailed subsystem (component) models. For 
instance, coupling of an SD model and a groundwater flow model 
(Chang et al., 2010) helped improve groundwater recharge estimation 
fed to the SD model. This type of integrated approach allows assessing 
the performance and long-term effects of different water management 
alternatives including MAR, both on groundwater systems and on supply 
reliability. Bayesian networks offer a holistic modeling approach, 
valuable for stochastic estimations (Table 2). However, their complexity 
can limit interpretation and application. Integrating them with 
machine-learning approaches can enhance estimation of the conditional 
probabilities (Moradi et al., 2022).

The different modeling approaches assessed can provide comple
mentary perspectives for analyzing regional hydrological and anthro
pogenic water systems (Secci et al., 2024; Sušnik et al., 2013) and 
evaluating MAR as part of that system. However, examples which apply 
multiple methodologies in a comparative way are scarce and increased 
application of these methodologies can enhance their effectiveness and 
informed utilization.

We should note that the strengths and limitations summarized in 
Table 2 reflect patterns observed in the reviewed literature rather than 
universal facts about the modeling methodologies. Some of the char
acteristics discussed are context-dependent and influenced by factors 
such as data availability, computational resources, and system 
complexity. To address this uncertainty, we explicitly note that these 
statements should be interpreted as patterns in the reviewed examples 
rather than absolute properties. Therefore, the comparative insights in 
Table 2 should be considered within the scope of these reviewed 

Fig. 3. Comparison of modeling approaches for assessing MAR in relation to regional water quantity challenges. The figure illustrates the spatial (local to regional; 
lumped, semi-distributed, or distributed) and temporal (short-to long-term) scales at which the modeling approaches were applied in the reviewed studies. Positions 
represent typical applications observed in the selected literature, not the full theoretical range of each approach. Bayesian Networks are shown outside the temporal 
range due to their non-temporal structure. System dynamics models have primarily been used for lumped representations, but examples of semi-distributed cases also 
exit in literature. Integrated models are shown within regional scales and applied at longer time scales, based on their use in the reviewed studies, although they can 
be applied across broader spatial and temporal scales.
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examples. In addition, the strengths or limitations of each approach may 
not occur concurrently; for example, ML models can offer faster 
computation or enhanced predictive capability under data-rich condi
tions, but these advantages do not necessarily coincide. Future updates 
to this collection incorporating additional literature examples could 
further refine and enhance the insights presented here.

4.2. Uncertainty across modeling approaches

Uncertainty is inherent in model-based analyses of MAR measures, 
and must be addressed to support robust and responsible decision- 
making (Refsgaard et al., 2007). Uncertainty in MAR modeling ranges 
from input data, parameter and structural uncertainty to deep uncer
tainty related to unknown future socio-economic and climate conditions 
(Lempert et al., 2003; Walker et al., 2013). The temporal scale of the 
future system that models aim to represent has an influence on the types 
and magnitudes of uncertainties introduced in the analysis, as longer 
time horizons often involve greater unpredictability (e.g., future emis
sion scenarios, climate models, and, socio-economic developments such 
as future groundwater abstraction levels (Mustafa et al., 2019)). As 
illustrated in Fig. 4, the diversity of modeling approaches, from 
physically-based models to machine learning, system dynamics and 
Bayesian networks, introduces varying capacities for uncertainty rep
resentation and quantification, with some models better suited for 

parameter uncertainty, and others for scenario analysis.
Parameter and input uncertainty are universal aspects of all the 

reviewed modeling methodologies, making robust MAR assessment 
fundamentally dependent on high-quality data obtained through 
comprehensive monitoring, field investigations, and careful data selec
tion, aligned with study objectives and project stage. While such prac
tices substantially reduce uncertainty, input and parameter uncertainty 
is commonly quantified through sensitivity analysis and Monte Carlo- 
based frameworks, to evaluate the impact of uncertain inputs and pa
rameters on model outputs (Pianosi et al., 2016).

In physically-based models, which are inherently deterministic, 
scenario analysis (what-if frameworks) allows to consider the influence 
of external aspects such as abstraction scenarios, or boundary conditions 
on simulated outputs. Therefore, exploring alternative external condi
tions, such as pumping/recharge scenarios, helps assess management or 
climatic impacts. In physically-based models (like MODFLOW), through 
scenario analysis, one defines the boundary and management alterna
tives, followed by sensitivity analysis within or across those scenarios to 
quantify uncertainty effects. In addition, specific to groundwater flow 
models, uncertainty in the geological interpretation of the subsurface 
remains a major limitation, often affecting the accuracy of model pre
dictions. This is typically addressed by considering alternative model 
structures that represent plausible subsurface configurations (Mustafa 
et al., 2019). Therefore, in regional scales of MAR analysis, this aspect 

Table 2 
Strengths and limitations of diverse modeling methodologies in supporting regional objectives during MAR planning and assessment, based on the examples in 
literature.

Modeling Methods Strengths Limitations

Process-based groundwater 
models

• Grounded in physical laws
• Flexible in temporal and spatial details
• Familiar to the hydrogeological community
• Facilitates interpretability and systems understanding (white-box models)
• Suitable for exploring terrae incognitae (beyond known system conditions, 

such as climate change impacts)

• Model parameterization dependent on high quality and detailed 
hydrogeological and stratigraphical data

• Often computationally demanding (for multiple scenario 
analysis and long-term runs)

• Limited to groundwater system processes

Machine learning models for 
groundwater prediction

• Can offer faster computation than numerical groundwater models 
(especially for scenario exploration)

• May provide enhanced predictive capability compared to process-driven 
models under data-rich conditions

• Data hungry
• Poor extrapolation capability (long-term predictions such as 

non-stationary climatic conditions)
• Often lack interpretability (black-box models)

Integrated surface and 
groundwater flow models

• Integration of surface water and groundwater dynamics
• Representation of feedbacks between surface and subsurface flows 

(especially for MAR using surface water and stormwater)

• Analysis is limited to hydrological domain
• Requires quality data for both surface and groundwater model 

parameterization
• High computational cost to evaluate multiple scenarios quickly

Water Balance models • Adaptable abstraction degree, depending on data availability
• Flexible for incorporating anthropogenic water demands for water 

accounting
• Capable of including feedbacks and delays by using customized equations

• Process parameterization is often kept simple, often lumped 
(limited representation of spatial heterogeneity)

• Limited representation of hydrological system, especially 
groundwater flow dynamics

Water Allocation models • Simplified and efficient accounting of supply availability, reliability, trade- 
offs among multiple demands

• Suitable for water allocation planning

• Limited representation of hydrological system, especially 
groundwater flow dynamics (needs coupling with domain 
models)

• Includes implicit feedbacks (explicit feedbacks need to be 
implemented using modular or custom equations)

System Dynamics models • Holistic representation of the hydrological and anthropogenic water 
systems, socioeconomic, and infrastructure components

• Captures feedback loops, delays and nonlinear behaviors
• Efficient for long-term scenario simulation
• Suitable for strategic planning
• Useful for analysis of hidden behaviors emerging due to the interaction of 

all model components

• Lumped representation of the system (lumped but can be 
integrated to semi-distributed structure)

• Lacks spatial aspect
• Model structure can become overly complex, increasing model 

parameters
• Challenging representation of hydrogeological processes

Bayesian Networks • Appropriate for quantifying uncertainties (stochastic nature), and 
variabilities in all system variables

• Capable of incorporating qualitative data (expert opinion especially when 
quantitative data is scarce), socioeconomic, and infrastructure 
components

• Suitable for strategic planning

• Lumped representation of system components (but can handle 
spatial aspects indirectly)

• Limited capacity in handling dynamic processes- temporal detail
• No feedback representation
• Limited physical process representation
• Model structure can become overly complex

Integrated subsystem models • Realization of integrated modeling through coupling of existing models
• Providing multi-scale system representation
• Possibility to incorporate feedbacks (between modeled components)

• High computational demand (for multiple scenario analysis and 
long-term runs)

• Requires high model parameterization
• Complexity of coupling multiple models (with different spatial 

and/or temporal resolutions)
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needs to be considered when these models are used.
As the complexity of the MAR scheme and the temporal and spatial 

scales of analysis increase, models are integrated to improve feedback 
mechanisms within the system under study. For integrated models, 
uncertainty propagation may amplify or reduce upon integration (Bach 
et al., 2014), as e.g., more system parameters are introduced in the in
tegrated model (hence, potentially adding to parameter uncertainty), 
while complex regional system representation is expected to improve 
upon integration. Various frameworks are available that facilitate 
mapping this propagation from one model to the other (Kirchner et al., 
2021), and introduce quantification frameworks. This is a complex task, 
especially moving towards integration of multiple modeling frame
works, each with varying schematizations (lumped-distributed subsys
tem models creating structural uncertainty), scales, parameter 
uncertainties, and feedback dependencies. These aspects complicate 
investigation of future scenarios with these models due to computational 
or methodological barriers.

In holistic modeling approaches such as SDMs, structural uncertainty 
arises from alternative feedback structures and different levels of model 
aggregation (e.g., lumped vs. semi-lumped conceptualizations). These 
aspects should be investigated within the structural uncertainty frame
work. SDMs are increasingly used in investigation of scenario uncer
tainty. This is because SDMs are computationally light, so running 
thousands of scenarios is feasible, which is promising for investigation of 
uncertain futures e.g. through exploratory modeling approaches 
(Kwakkel, 2017) applied to SDMs (Kwakkel and Pruyt, 2013).

Bayesian networks are intrinsically probabilistic and explicitly 
model uncertainty through conditional probability tables (CPTs). Un
certainty in conditional probabilities (arising from limited data, expert 
judgment, or a priori parameter assumptions), can also be influenced by 
structural uncertainty in the network. This structural uncertainty can 
then propagate into parameter uncertainty, affecting the reliability and 
robustness of the model. Therefore, through uncertainty analysis, the 
variability of the parameters and the sensitivity of the outputs can be a 
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Fig. 4. Overview of modeling objectives and methods in MAR studies by phase of analysis and spatial scale, highlighting the connection between project objectives, 
system characteristics, and the selection of suitable modeling techniques. At local scales, models may include saturated and/or unsaturated flow processes depending 
on MAR type and site conditions.
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measure of confidence in the Bayesian network results. In this context, 
sensitivity analysis methods can be applied to investigate the effect of 
individual variations to one or more parameter at a time 
(Ballester-Ripoll and Leonelli, 2025).

Using the range of methodologies for uncertainty assessment 
(Refsgaard et al., 2007; Walker et al., 2013), the degree of confidence in 
model-based analyses of the future systems, and the communication of 
that to decision-makers can be improved. For example, Miro et al. 
(2021) explored a wide range of plausible future conditions, accounting 
for deep uncertainties in water management and groundwater systems, 
which resulted in a “more realistic safety margin” based on a broader 
view of uncertainty, guiding actionable thresholds for future adaptation. 
In the same study, due to challenges that e.g., model complexity adds to 
computational demand in model runs, they implement ML approaches 
to facilitate exploration of the uncertainty space.

We emphasize the need to explicitly incorporate uncertainty analysis 
in model-based MAR studies to improve the robustness and relevance of 
model outcomes for decision-making. A practical starting point is the 
development of an Uncertainty Framework Table (UFT) (Kirchner et al., 
2021), that maps sources and pathways of uncertainty, from inputs 
through model processes to outputs. This can be followed by adoption of 
quantification approaches that align with the chosen modeling meth
odology and the specific uncertainty sources identified, as briefly 
mentioned in this section.

4.3. Water quality

While the primary focus of this review is on water quantity, it is 
important to acknowledge the significance of water quality aspects in 
MAR project planning and assessment (Vanderzalm et al., 2022). In 
particular in local studies, solute transport or reactive transport models 
have been applied to assess risks associated with introducing external 
source water into ambient groundwater, as well as its interactions with 
the aquifer matrix (Sun et al., 2020) or MAR’s potential to mitigate 
regional groundwater quality deterioration (Guo et al., 2023; Sitek et al., 
2025). In addition, ML approaches can facilitate the prediction of water 
quality and geochemical processes in groundwater systems (Haggerty 
et al., 2023).

In large-scale studies, focusing on cross-sectoral impacts of MAR 
applications, i.e., on other components of the integrated water system, is 
a complex task, since it requires large-scale monitoring to evaluate the 
effects of source water beyond the aquifer system, or the connected 
surface waters. For example, Negev et al. (2017) traced water sources in 
a Soil Aquifer Treatment (SAT) system using isotopic analysis along the 
water-effluent-SAT chain, enabling a simple mixing equation to predict 
isotopic compositions throughout the regional water system.

We therefore emphasize the importance of system-wide water 
quality analysis and modeling in large-scale MAR projects and 
encourage researchers to explore this further. Although beyond the 
scope of this review, compiling such applications could provide valuable 
insights for future integrated water management strategies.

4.4. A comprehensive picture

In Fig. 4, an overview of modeling objectives and methodologies in 
MAR studies is provided, categorized by phase of analysis (planning, 
design, operation, performance assessment) and spatial scale (local to 
regional). The modeling approaches also reflect these various di
mensions, based on the objectives and data availability at each scale. At 
the local level, physically-based groundwater flow and transport models 
are used across all MAR phases due to their ability to represent sub
surface processes with high spatial and temporal resolution. These 
models facilitate assessments of hydrogeological feasibility, residence 
times, recovery efficiency, and operational optimization. While these 
challenges are broadly relevant across different MAR types, their sig
nificance and underlying mechanisms vary by each MAR approach.

To further enhance predictive performance and simulation effi
ciency, physically-based models may be integrated with machine 
learning techniques, provided high-quality data are available. This 
hybrid approach can offer improvements over numerical groundwater 
models, particularly in complex or data-rich settings. Water balance 
models also provide a high-level assessment regarding groundwater 
management priorities (e.g. recharge feasibility, groundwater levels 
with respect to demands) and changes in the water budget. Beyond the 
initial planning, design, and operational phases, the performance 
assessment of a MAR project is then complemented by key performance 
indicators (KPIs) at both local and regional scales. These guide adjust
ments to system design and operational strategies, and based on system 
performance indicators, efforts for upscaling and replicability of MAR 
can emerge.

At the regional scale, modeling shifts toward integrated approaches 
that address broader planning and design objectives, which are relevant 
across all MAR types. These include water allocation models, system 
dynamics models, and Bayesian networks, which can incorporate socio- 
economic and environmental factors, integrating hydrological and 
anthropogenic water systems. Furthermore, coupling multiple modeling 
methodologies or multiple subsystem models allows for the investiga
tion of regional effects, while providing various levels of information. 
For design purposes, MAR is often embedded within integrated water 
supply systems, for which Decision Support Systems (DSS) and Inte
grated Water Supply Models (Bach et al., 2014) can be utilized. 
Furthermore, to assess feasibility of relying on MAR as an additional 
supply source (increasing supply redundancy) and simulate the 
real-time state of the regional water system components, coupled 
models can benefit decision-making at the operational level, which re
quires more spatiotemporally detailed model outcomes.

5. Conclusions, limitations, and future directions

This study was motivated by the ongoing shift in MAR applications 
from local pilot projects to regional-scale implementations. We first 
considered the dimensions of MAR cases at the regional scale, focusing 
on water quantity aspects, and further asked the question: which 
modeling methodologies are best suited to represent the connections 
between MAR and the integrated hydrological-anthropogenic water 
system? When these measures are replicated or scaled up, their in
teractions with other components of the water system become signifi
cant, introducing complexity that cannot be addressed by local-scale 
approaches alone. To answer this question, we relied on examples in 
literature, focusing on model-based analyses of regional MAR applica
tions, with a focus on groundwater management and/or in relation to 
demand satisfaction, while pilot-scale MAR studies without regional/ 
system-level implications were excluded from the reviewed articles.

The classifications presented in this review show trends observed in 
the selected studies rather than comprehensive characteristics of all 
MAR applications or modeling approaches. Additionally, this review did 
not consider a temporal analysis of the evolution or prevalence of 
different modeling methodologies, which could potentially be valuable 
for representing research trends over time. Furthermore, the scope of 
this review was limited to water quantity aspects and studies focusing 
exclusively on water quality or geochemical processes, as well as non- 
peer-reviewed sources were excluded. Although this choice was moti
vated due to the ongoing water quantity challenges in MAR studies, it 
may have excluded relevant insights from for example, groundwater 
flow and solute transport modeling studies, or technical reports on MAR 
applications. We acknowledge that the synthesis on the modeling 
methodologies is constrained by the availability and reporting quality of 
the reviewed studies, which may introduce bias in the representation of 
modeling practices and their applicability to regional MAR contexts. 
Expanding this review with additional literature in the future could help 
refine and strengthen the insights presented here.

Based on the literature, the diversity of modeling approaches applied 
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to regional MAR reflects differences in objectives rather than a uniform 
attempt to represent the entire integrated water system. For example, 
process-based models are often used to account for groundwater storage 
changes, by treating demands and sources as static elements, whereas 
holistic approaches such as system dynamics models explicitly incor
porate variability in demand and source availability in combination 
with the storage changes in the groundwater system and connected 
surface water to support planning decisions. Water balance models on 
the other hand provide a general picture of catchment water resources 
and cover supply-demand portfolios. In these models, focus is less on 
changing relationships and more on priorities of water allocation. In
tegrated models of hydrological subsystems and anthropogenic pro
cesses are another type of approach that allow investigation of 
variabilities and focus on the interdependencies. They enable combi
nation of features from multiple models to help with system-level 
behavior exploration, providing enhanced spatial or process-based 
representation.

A valid MAR analysis does not always require representation of the 
full hydrogeological and anthropogenic system; what is critical is 
aligning the model with the planning horizon, source water variability, 
hydrological setting, and end-user context. Having these aspects clear, 
modelers should rely on the differences and similarities between the 
range of models reviewed here, in order to select suitable models based 
on their data and computational constraints, while considering the 
importance of capturing interdependencies and temporal regime 
changes, especially as large-scale MAR projects reshape both hydro
logical and anthropogenic systems. In the majority of the studies, this 
aspect of the regional context is not considered. This review highlights 
the importance of modeling approaches that facilitate this type of 
investigation, and establishes criteria that help select appropriate 
modeling approaches, ensuring choices are informed by the strengths 
and limitations of each method.

Furthermore, while holistic and integrated models offer promising 
avenues for considering long-term and cross-sectoral impacts, their 
adoption remains limited due to computational complexity, data re
quirements, and challenges in coupling diverse subsystems. Therefore, 
future research should prioritize hybrid modeling frameworks that 
combine the strengths of process-based or data-driven models together 
in an integrated modeling scheme, towards enabling more robust sce
nario analysis and uncertainty quantification. Parsimonious modeling 
schemes such as system dynamics models can for example facilitate such 
integrations. Additionally, policy and planning efforts should leverage 
integrated models complementary to site-specific studies, to support 
adaptive MAR strategies that ensure interventions are resilient to 
climate variability and anthropogenic changes. Addressing these gaps 
will enhance the relevance and applicability of MAR modeling for sus
tainable groundwater management.

In addition, future studies should expand the scope of regional-scale 
MAR analyses to include water quality modeling, or the combination of 
water quality and quantity modeling, in order to uncover which di
mensions of MAR influence system-level sustainability, trade-offs and 
propagation of effects, particularly in cases involving reclaimed water or 
complex source water interactions.
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